
2.2.1 Relations

• A (database) state associates each relation schema to a relation.

• elements of a relation are called tuples.
Every tuple represents an entity or a relationship. (name: Asia, area: 4.5E7)

• relations are unordered. Columns are also unordered.

Example:
Continent

name area

VARCHAR(20) NUMBER

Europe 9562489.6

Africa 3.02547e+07

Asia 4.50953e+07

America 3.9872e+07

Australia 8503474.56
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Relations: Example

Continent

name area

Europe 9562489.6

Africa 3.02547e+07

Asia 4.50953e+07

America 3.9872e+07

Australia 8503474.56

Country

name code population area ...

Germany D 83536115 356910

Sweden S 8900954 449964

Russia R 143666931 17075200

Poland PL 38642565 312683

Bolivia BOL 1098580 7165257

.. .. .. ..

encompasses

Country Continent percent

VARCHAR(4) VARCHAR(20) NUMBER

R Europe 20

R Asia 80

D Europe 100

. . . . . . . . .

• with referential integrity constraints
(to be explained later)

• references to keys
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Graphical representation of the relational schema of the MONDIAL database (excerpt):

Organization
name

✄ abbrev
city ✄
country ✄
province ✄
established

isMember
✁ organization
✁ country

type

Country
name

✄ code ✄
capital ✄
province ✄
area
population

borders
✁ country1
✁ country2

length

located
✁ city
✁ country
✁ province

river ✄
lake ✄
sea ✄

City
✄ name
✄ country ✄
✄ province ✄

population
latitude
longitude

Province
✁ name ✁
✁ country ✁

area
population

✁ capital

geo_lake
lake ✄

✁ country
✁ province

Lake
✄ name

area

geo_river
river ✄

✁ country
✁ province

River
✄ name

length
✁ river
✁ lake
✁ sea

geo_sea
sea ✄

✁ country
✁ province

Sea
✄ name

depth
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DEVELOPMENT OF A DATABASE APPLICATION

(cf. 3-Level-Architecture, Slide 6 and Slide 43)

Conceptual Design: structuring of the requirements for the representation of the relevant
excerpt of the real world:

• independent from the database system to be used (phys. level),

• independent from the detailed views of the users (external schema),

results in the conceptual schema, in general an ER schema (or specified in UML).

Implementation Design: Mapping from the conceptual schema to the notions of the
database system to be used.
The result is the logical schema, usually a relational schema (or an object-oriented
schema, or – in earlier times – a network database schema).

• this mapping is described next,

• then realize it in the database (SQL) ...
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DEVELOPMENT OF A DATABASE APPLICATION (CONT’D)

Physical Design: definition of the actual storage and appropriate auxiliary data structures
(for enhanced efficiency).

• don’t worry: creating the logical schema in an SQL database automatically creates a
structure on the physical level
(this is the advantage of having the relational model as a kind of an abstract datatype that
is implemented in a standardized way by relational databases).

Detailed Physical Design: optionally/later: finetuning of the physical level.

Implementation of the External Level:

• clarify the requirements on the external level by using the conceptual model, adapt to daily
users’ needs (forms, presentations, reports, data exchange interfaces, ...),

• implement the external level based on the logical model.

Note:
“Classical” database design is restricted to the modeling of (static) structures, not considering
the (dynamic) processes resulting from the execution (see UML).
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2.3 Logical Schema: Mapping ERM to RM

Starting with the ER schema, the relational schema is designed.

[Overview slide]

Let EER an entity type and RER a relationship type in the ERM.

• Entity types: (EER, {A1, . . . , An}) → E(A1, . . . , An),

• For weak entity types, the key attributes of the identifying entity type must be added.

• Relationship types:
(RER, {RO1 : E1, . . . , ROk : Ek}, {A1, . . . , Am}) →
B(E1_K11, . . . , E1_K1p1 , . . . , Ek_Kk1, . . . , Ek_Kkpk

, A1, . . . , Am) ,

where {Ki1, . . . , Kipi} are the primary keys of Ei, 1 ≤ i ≤ k.

– Renaming of foreign key attributes is allowed
(e.g. coinciding attribute names in different referenced keys)

In case that k = 2 and a (1,1) relationship cardinality, the relation schema of the
relationship type and that of the entity type may be merged.

• Aggregate types can be ignored if the underlying relationship type is mapped.
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ENTITY TYPES

(EER, {A1, . . . , An}) → E(Ai1 , . . . , Aik)

where {Ai1 , . . . , Aik} ⊆ {A1, . . . , An} are the scalar (i.e., not multivalued) attributes of EER –
multivalued attributes are mapped separately.

continentname area

Asia 4.5E7

Continent

Name Area

VARCHAR(20) NUMBER

Europe 9562489.6

Africa 3.02547e+07

Asia 4.50953e+07

America 3.9872e+07

Australia 8503474.56

The candidate keys of the relation are the candidate keys of the entity type.
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MULTIVALUED ATTRIBUTES

... one thing left:

Attributes of relations must only be single values.

(EER, {A1, . . . , Ai, . . . , An}) where Ai is a multivalued attribute
→ E_Ai(K1, . . . , Kp, Ai)

where {K1, . . . , Kp} are the primary keys of E.
(renaming is allowed, especially if there is only one key attribute)

{K1, . . . , Kp, Ai} are the primary keys of the relation E_Ai.

Countrycode language

Languages

Country Language

D German

CH German

CH French

.. ..
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WEAK ENTITY TYPES

For weak entity types, the key attributes of the identifying entity type(s) must be added.

Country

in

name

area pop.

code

356910 83536115

Germany D

Province

in Prov.

name

area pop.

35751 10272069

Baden-W.

Cityname pop.

198496Freiburg

< 1, 1 >

< 1, 1 >

City

name country province population ...

Freiburg D Baden-W. 198496 ..

Berlin D Berlin 3472009 ..

.. .. .. .. ..
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RELATIONSHIP TYPES

(RER, {RO1 : E1, . . . , ROk : Ek}, {A1, . . . , Am}) →
B(E1_K11, . . . , E1_K1p1

, . . . , Ek_Kk1, . . . , Ek_Kkpk
, A1, . . . , Am)

where {Ki1, . . . , Kipi
} are the primary keys of Ei, 1 ≤ i ≤ k.

(it is allowed to rename, e.g., to use Country for Country.Code)

Continent Countryencompasses

name

Europe

code

R

percent

20

encompasses

Country Continent Percent

VARCHAR(4) VARCHAR(20) NUMBER

R Europe 20

R Asia 80

D Europe 100

. . . . . . . . .

• Note: for references to weak entity types, the global key must be used (exercise:
located_on as an n:m relationship between cities and islands).
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RELATIONSHIP TYPES: 1:N-RELATIONSHIPS

In case that k = 2 (binary relationship) and a (0,1)- or (1,1)-relationship cardinality (i.e.,
n:1-relations), the relation schema of the relationship type and that of the entity type can be
merged (into the relation schema for the entity type)

Country

City

is_capital

< 1, 1 >

< 0, 1 >

name

Germany

code

D

name

Berlin

pop.

3472009

Country

Name Code Population Capital Province ...

Germany D 83536115 Berlin Berlin ..

Austria A 8023244 Vienna Vienna ..

Canada CDN 28820671 Ottawa Quebec ..

Bolivia BOL 7165257 La Paz Bolivia ..

.. .. .. .. .. ..

Other examples: headquarters of organizations, flows_into (the latter is a bit more complex
because a river flows into another river, a lake, or a sea).
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RELATIONSHIP TYPES

In case that for some relationship type, the keys of involved entity types have coinciding
names, the role specifications may be used to guarantee the uniqueness of key attributes in
the relationship type.

Countrycode name

borders

< 0, ∗ >< 0, ∗ >

borders

Country1 Country2

D F

D CH

CH F

.. ..
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EXERCISE

Exercise 2.4
Give a relational schema for the following ER schema:

Supplier

Product Part

delivers

< 0, ∗ >

< 0, ∗ > < 0, ∗ >

component

< 0, ∗ >belongs to

< 0, ∗ > contains

nr

name

addr

nr
name

color weight

nrname

amount date
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2.4 Relational Databases – Formalization

SYNTAX

(note the similarities with first-order logic)

• A (relational) signature is a set of relation schemata Ri(X̄i).

• a relation schema R(X̄) consists of a name (here, R) and a finite set X̄ = {A1, . . . , Am},
m ≥ 1 of attributes.
X̄ is the format of the schema.

• a (relational) database schema R consists of a relational signature (i.e., a set of
(relation) schemata), optionally with integrity constraints.

• alternative notations for relation schemata:

– abbreviation: R(A1, . . . , An) instead of R({A1, . . . , An}).
– if the order of the attributes {A1, . . . , Am} is relevant (i.e., for representation as a

table), X̄ is denoted as a vector [A1, . . . , Am].
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RELATIONAL DATABASES – FORMALIZATION: DOMAINS

Consider a relation schema R(X̄)

• each attribute A ∈ X̄ is associated to a (non-empty) domain, called dom(A).

• dom(X̄) := dom(A1)× . . .× dom(Am).

Note the following:

• the assignment of domains to attributes belongs to the database schema.

• in first-order logic, the definition of the domain of a structure belongs to the semantics.
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RELATIONAL DATABASES – FORMALIZATION: SEMANTICS

• A (relational) database (or, more explicitly, a database state) S (over
R = {R1(X̄1), . . . , Rn(X̄n)}) is a relational structure over R.

• A relational structure S associates each Ri(X̄i) to a relation S(Ri) over X̄i.

• elements of a relation are called tuples.
(every tuple represents an entity or a relationship.)

• a tuple µ over X̄ is a mapping µ : X̄ → dom(X̄); or, for each individual attribute,
µ : A → dom(A).
Tup(X̄) denotes the set of all tuples over X̄.

Example: µ = Name → “Asia”, Area → 4.50953e+07

with µ(Name) = “Asia”, µ(Area) = 4.5E7

• a relation r over X̄ is a finite set r ⊆ Tup(X̄) – usually represented by a table.

• Rel(X̄) := 2Tup(X̄) is the set of all relations over X̄ .
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PERSPECTIVES: RELATIONAL VS. SET THEORY

• Relations are sets of tuples.
⇒ relational algebra

PERSPECTIVES: RELATIONAL VS. FIRST-ORDER LOGIC

• database schema = relational signature = first-order signature without function symbols

• database = relational structure = first-order structure (without function symbols)
(some autors use the term “interpretation” instead of “structure”)

Relational theory is based on “classical” logic results:
⇒ relational calculus

• first-order logic

• finite model theory

• complexity results

• (deductive databases)
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KEYS

While in the ER model, the keys serve only for an intuitive modeling, in relational database
design they play an important role for the database performance and for the ability of the
database to incorporate and maintain key constraints.

The notion of keys is defined as for the ER model:

For a set K̄ ⊆ X̄ of attributes of a relation schema R, a relation r ∈ Rel(X̄) satisfies the key
constraint K̄ if for all tuples µ1, µ2 ∈ r:

If µ1(K̄) = µ2(K̄) (i.e., µ1 and µ2 coincide on the values of K̄), then µ1 = µ2.

More Concrete Requirements on Keys

(to be formalized on the next slides)

keys should be minimal:

• no subset K̄ ′ ( K̄ satisfies the key property,

• for no subset X̄ ′ ( X̄ of the attributes of R, any subset K̄ ′ ( K̄ satisfies the key property
wrt. X̄.
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KEYS: ADDITIONAL FORMAL REQUIREMENTS

The relational model provides a more concise formalization of keys (cf. Slide 322 ff. on
Normalization Theory for details).

These are based on the definition of functional dependencies:

Given a relation R(X̄), V̄ , W̄ ⊆ X̄.
r satisfies the functional dependency (FD) V̄ → W̄ if for all tuples µ1, µ2 ∈ r,

µ1(V̄ ) = µ2(V̄ ) ⇒ µ1(W̄ ) = µ2(W̄ ) .

(“W̄ functionally depends on V̄ ”)

Example 2.4
Consider the relation schema Country(Name, Code, Area, Population, Capital, CapProv).

The following functional dependencies hold wrt. the intended application domain:

{Code} → {Name}, {Name} → {Code}
{Code} → {Area, Population, Capital, CapProv}
{Code} → {Name, Code, Area, Population, Capital, CapProv}
{Name} → {Name, Code, Area, Population, Capital, CapProv} ✷
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Keys (Cont’d)

• In general, there are more than one key (called candidate keys) for a relation schema R.

• One of these candidate keys is distinguished (by the designer) to be the primary key.
In the schema, it is represented by underlining these attributes.
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KEYS: ADDITIONAL FORMAL REQUIREMENTS

• Formalization of the Key Constraint:
K̄ ⊆ X̄ is a possible key of R(X̄) if K̄ → X̄.

Additionally:

• keys must be minimal, i.e., no subset K̄ ′ ( K̄ satisfies the key property:
there is no subset K̄ ′ ( K̄ s.t. K̄ ′ → X̄.
(otherwise: take K̄ ′ as key)

• every single attribute should be fully dependent on the complete key: for every
A ∈ (X̄ \ K̄): there is no subset K̄ ′ ( K̄ s.t. K̄ ′ → A.
(otherwise: if there is some attribute that depends only on a part of the key, split this
relationship into a separate table, cf. Section on Normalization Theory, Slide 322.)

Although looking formally, the second criterion is also easy to understand and prevents
bad/dangerous database design.
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Keys and Database Design: Example
Country (bad schema)

Name Code Language Percent Population Area Capital Province

Germany D German 100 83536115 356910 Berlin Berlin

Switzerland CH German 65 7207060 41290 Bern BE

Switzerland CH French 18 7207060 41290 Bern BE

Switzerland CH Italian 12 7207060 41290 Bern BE

.. .. .. .. .. .. ..

• the database is redundant

• needs more space, less efficient to query

• update anomalies/risks: updating Swiss population requires to update all three lines,
otherwise inconsistent information

Dependency analysis:

Keys: {Code, Language} or {Name, Language}, but
e.g. already {Code} → {Population, Capital}

Split into Country(Name, Code, Population, Capital, Province) and Languages(Code,
Language, Percent).
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Keys and Database Design

• A good ER model and straightforward translation as introduced in the previous section
leads to a good relational design

• determining the keys is helpful in validating the design:

• for tables obtained from translating entity types, the keys are the same as in the ER model
(for weak entity types: including those of the identifying entity types; cf. Country)

• the handling of multivalued attributes as shown on Slide 52 is a consequence of the
functional dependency analysis (same case as in the above example)

• for relations that represent relationship types: see exercise below.

Exercise: Keys of relations obtained from relationships

Discuss how the keys of the relations that are obtained from relationship types are
determined. Which alternative scenarios have to be considered?

• consider binary relationships systematically,

• what about ternary relationships?
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INCLUSION CONSTRAINTS AND REFERENTIAL INTEGRITY

Consider relation schemata R1(X̄1) and R2(X̄2). Let Ȳ1 ⊆ X̄1 and Ȳ2 ⊆ X̄2 two attribute
vectors of the same length.

r1 = S(R1) and r2 = S(R2) satisfy an inclusion constraint R1.Ȳ1 ⊆ R2.Ȳ2 if and only if for
all µ1 ∈ r1 there is a µ2 ∈ r2 s.t. µ1(Ȳ1) = µ2(Ȳ2).

Referential Integrity

• if Ȳ2 is the key of R2, there is a referential integrity constraint from R1.Ȳ1 to R2.Ȳ2.

– Ȳ1 is called a foreign key in R1 that references R2.Ȳ2.

• encompasses.Continent ⊆ Continent.Name

• encompasses.Country ⊆ Country.Code

Referential integrity constraints result from incorporating the keys of the participating entities
into the table that represents the relationship.
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NULL VALUES – UNKNOWN VALUES

• up to now, tuples are total functions.

• if for some attribute, there is no value, a null value can be used

Semantics:

– “value exists, but is unknown”
(e.g., geo-coordinates of some cities)

– “value does not yet exist, but will exist in the future”
(e.g., inflation of a newly founded country)

– “attribute not applicable” (e.g. “last eruption date” for mountains other than volcanoes)

• a partial tuple over X̄ is a mapping s.t.

for allA ∈ X̄, µ(A) ∈ dom(A) ∪ {null}.

A relation is called partial if it contains partial tuples.
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2.4.1 Exercise

Exercise 2.5
Consider the relation schema R(X̄), where X̄ = {A,B} and dom(A) = dom(B) = {1, 2}.

• Give Tup(X̄) and Rel(X̄).

• A is a key of R. Which relations r ∈ Rel(X̄) violate the key constraint? ✷
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