Chapter 3 Relational Database Languages: Relational Algebra

We first consider only query languages.

Relational Algebra: Queries are expressions over operators and relation names.

Relational Calculus: Queries are special formulas of first-order logic with free variables.

SQL: Combination from algebra and calculus and additional constructs. Widely used DML for relational databases.

QBE: Graphical query language.

Deductive Databases: Queries are logical rules.

72

RELATIONAL DATABASE LANGUAGES: COMPARISON AND OUTLOOK

Remark:

- Relational Algebra and (safe) Relational Calculus have the same expressive power. For every expression of the algebra there is an equivalent expression in the calculus, and vice versa.
- A query language is called **relationally complete**, if it is (at least) as expressive as the relational algebra.
- These languages are compromises between efficiency and expressive power; they are not computationally complete (i.e., they cannot simulate a Turing Machine).
- They can be embedded into host languages (e.g. C++ or Java) or extended (PL/SQL), resulting in full computational completeness.
- Deductive Databases (Datalog) are more expressive than relational algebra and calculus.

3.1 Relational Algebra: Computations over Relations

Operations on Tuples - Overview Slide

Let $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \ldots, A_k\}$.

(Formal definition of μ see Slide 61)

- For Ø ⊂ Ī ⊆ X̄, the expression μ[Ī] denotes the projection of μ to Ī.
 Result: μ[Ī] ∈ Tup(Ī) where μ[Ī](A) = μ(A), A ∈ Ī.
- A selection condition α (wrt. X̄) is an expression of the form A θ B or A θ c, or c θ A where A, B ∈ X̄, dom(A) = dom(B), c ∈ dom(A), and θ is a comparison operator on that domain like e.g. {=,≠,≤,<,≥,>}.

A tuple $\mu \in \text{Tup}(\bar{X})$ satisfies a selection condition α , if – according to $\alpha - \mu(A) \theta \mu(B)$ or $\mu(A) \theta c$, or $c \theta \mu(A)$ holds.

These (atomic) selection conditions can be combined to formulas by using $\land,\lor,\neg,$ and (,).

• For $\overline{Y} = \{B_1, \dots, B_k\}$, the expression $\mu[A_1 \to B_1, \dots, A_k \to B_k]$ denotes the **renaming** of μ .

Result: $\mu[\ldots, A_i \to B_i, \ldots] \in \operatorname{Tup}(\bar{Y})$ where $\mu[\ldots, A_i \to B_i, \ldots](B_i) = \mu(A_i)$ for $1 \le i \le k$.

Let $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \dots, A_k\}$.

Projection

For $\emptyset \subset \overline{Y} \subseteq \overline{X}$, the expression $\mu[\overline{Y}]$ denotes the **projection** of μ to \overline{Y} .

Result: $\mu[\bar{Y}] \in \operatorname{Tup}(\bar{Y})$ where $\mu[\bar{Y}](A) = \mu(A), \ A \in \bar{Y}$.

projection to a given set of attributes

Example 3.1

Consider the relation schema $R(\bar{X}) = continent(Name, Area): \bar{X} = [Name, Area]$ and the tuple $\mu = \boxed{Name \rightarrow "Asia", Area \rightarrow 4.50953e+07}$. formally: $\mu(Name) = "Asia", \mu(Area) = 4.5E7$ projection attributes: Let $\bar{Y} = [Name]$ Result: $\mu[Name] = \boxed{Name \rightarrow "Asia"}$

Again, $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \ldots, A_k\}$.

Selection

A selection condition α (wrt. \bar{X}) is an expression of the form $A \theta B$ or $A \theta c$, or $c \theta A$ where $A, B \in \bar{X}$, dom $(A) = \text{dom}(B), c \in \text{dom}(A)$, and θ is a comparison operator on that domain like e.g. $\{=,\neq,\leq,<,\geq,>\}$.

A tuple $\mu \in \text{Tup}(\bar{X})$ satisfies a selection condition α , if – according to $\alpha - \mu(A) \theta \mu(B)$ or $\mu(A) \theta c$, or $c \theta \mu(A)$ holds.

yes/no-selection of tuples (without changing the tuple)

Example 3.2

Consider again the relation schema $R(\bar{X}) = continent(Name, Area): \bar{X} = [Name, Area].$ Selection condition: Area > 10.000.000.

Consider again the tuple $\mu = \boxed{\text{Name} \rightarrow \text{"Asia", Area} \rightarrow 4.50953e+07}$.

formally: $\mu(Name) =$ "Asia", $\mu(Area) = 4.5E7$

check: $\mu(Area) > 10.000.000$

Result: yes.

These (atomic) selection conditions can be combined to formulas by using \land , \lor , \neg , and (,).

76

Let $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \dots, A_k\}$.

Renaming

For $\overline{Y} = \{B_1, \dots, B_k\}$, the expression $\mu[A_1 \to B_1, \dots, A_k \to B_k]$ denotes the **renaming** of μ . Result: $\mu[\dots, A_i \to B_i, \dots] \in \text{Tup}(\overline{Y})$ where $\mu[\dots, A_i \to B_i, \dots](B_i) = \mu(A_i)$ for $1 \le i \le k$.

renaming of attributes (without changing the tuple)

Example 3.3

Consider (for a tuple of the table $R(\bar{X}) = encompasses(Country, Continent, Percent)$): $\bar{X} = [Country, Continent, Percent].$ Consider the tuple $\mu = \boxed{Country \rightarrow "R", Continent \rightarrow "Asia", Percent \rightarrow 80}$. formally: $\mu(Country) = "R", \mu(Continent) = "Asia", \mu(Percent) = 80$ Renaming: $\bar{Y} = [Code, Name, Percent]$ Result: a new tuple $\mu[Country \rightarrow Code, Continent \rightarrow Name, Percent \rightarrow Percent] = \boxed{Code \rightarrow "R", Name \rightarrow "Asia", Percent \rightarrow 80}$ that now fits into the schema $new_encompasses(Code, Name, Percent).$

The usefulness of renaming will become clear later ...

EXPRESSIONS IN THE RELATIONAL ALGEBRA

What is an algebra?

- An algebra consists of a "domain" (i.e., a set of "things"), and a set of operators.
- Operators map elements of the domain to other elements of the domain.
- Each of the operators has a "semantics", that is, a definition how the result of applying it to some input should look like.
- Algebra expressions are built over basic constants and operators (inductive definition).

Relational Algebra

- The "domain" consists of all relations (over arbitrary sets of attributes).
- The operators are then used for combining relations, and for describing computations e.g., in SQL.
- Relational algebra expressions are defined inductively over relations and operators.
- Relational algebra expressions define queries against a relational database.

78

INDUCTIVE DEFINITION OF EXPRESSIONS

Atomic Expressions

For an arbitrary attribute A and a constant a ∈ dom(A), the constant relation A : {a} is an algebra expression.

Format: [A]Result relation: $\{a\}$

• Given a database schema $\mathbf{R} = \{R_1(\bar{X}_1), \dots, R_n(\bar{X}_n)\}$, every relation name R_i is an algebra expression.

Format of R_i : X_i

Result relation (wrt. a given database state S): the relation $S(R_i)$ that is currently stored in the database.

Structural Induction: Applying an Operator
• takes one or more input relations in_1, in_2, \ldots
produces a result relation <i>out</i> :
 <i>out</i> has a format, depends on the formats of the input relations.
 <i>out</i> is a relation, i.e., it contains some tuples, depends on the content of the input relations.

80

BASE OPERATORS

Let \bar{X}, \bar{Y} formats and $r \in \operatorname{Rel}(\bar{X})$ and $s \in \operatorname{Rel}(\bar{Y})$ relations over \bar{X} and \bar{Y} .

Union

Assume $r, s \in \operatorname{Rel}(\bar{X})$. Result format of $r \cup s$: \bar{X} Result relation: $r \cup s = \{\mu \in \operatorname{Tup}(\bar{X}) \mid \mu \in r \text{ or } \mu \in s\}.$

	A	B	C		Ð	a	_	A	В	C
r =	0	h	C	-		C	$r \cup s =$	a	b	c
	d	a	f	s =		a f			$a \\ b$	
	c	b	a			Ŭ		b	g	a

Set Difference

Assume $r, s \in \operatorname{Rel}(\bar{X})$. Result format of $r \setminus s$: \bar{X} Result relation: $r \setminus s = \{ \mu \in r \mid \mu \notin s \}$.

$$r = \frac{A \quad B \quad C}{a \quad b \quad c} \qquad s = \frac{A \quad B \quad C}{b \quad g \quad a} \qquad r \setminus s = \frac{A \quad B \quad C}{a \quad b \quad c} \\ \frac{A \quad B \quad C}{c \quad b \quad d} \qquad r \setminus s = \frac{A \quad B \quad C}{c \quad b \quad d}$$

82

Projection

Assume $r \in \operatorname{Rel}(\bar{X})$ and $\bar{Y} \subseteq \bar{X}$. Result format of $\pi[\bar{Y}](r)$: \bar{Y} Result relation: $\pi[\bar{Y}](r) = \{\mu[\bar{Y}] \mid \mu \in r\}.$

Example 3.4

Continent						
<u>Name</u>	Area					
Europe	9562489.6					
Africa	3.02547e+07					
Asia	4.50953e+07					
America	3.9872e+07					
Australia	8503474.56					

Let $\bar{Y} = [Name]$

Name ightarrow "Europe"
Name ightarrow "Africa"
Name ightarrow "Asia"
Name ightarrow "America"
Name ightarrow "Australia"

$\pi[Name]$ (Continent))
Name	
Europe	
Africa	
Asia	
America	
Australia	

Selection

Assume $r \in \operatorname{Rel}(\bar{X})$ and a selection condition α over \bar{X} .

Result format of $\sigma[\alpha](r)$: \overline{X} Result relation: $\sigma[\alpha](r) = \{\mu \in r \mid \mu \text{ satisfies } \alpha\}.$

Example 3.5

Со	ntinent	Let $\alpha = "Area > 10.000.000"$		
Name Area			$\sigma[Area >$	10E6](Continent)
Europe	9562489.6	$\mu_1(Area) > 10.000.000$?- no	<u>Name</u>	Area
Africa	3.02547e+07	$\mu_2(Area) > 10.000.000$?- yes	Africa	3.02547e+07
Asia	4.50953e+07	$\mu_3(Area) > 10.000.000$?- yes	Asia	4.50953e+07
America	3.9872e+07	$\mu_4(Area) > 10.000.000$?- yes	America	3.9872e+07
Australia	8503474.56	$\mu_5(Area) > 10.000.000$?- no		

84

Renaming

Assume $r \in \text{Rel}(\bar{X})$ with $X = [A_1, \dots, A_k]$ and a renaming $[A_1 \to B_1, \dots, A_k \to B_k]$.

Result format of $\rho[A_1 \to B_1, \dots, A_k \to B_k](r)$: $[B_1, \dots, B_k]$ Result relation: $\rho[A_1 \to B_1, \dots, A_k \to B_k](r) = \{\mu[A_1 \to B_1, \dots, A_k \to B_k] \mid \mu \in r\}.$

Example 3.6

Consider the renaming of the table encompasses(Country, Continent, Percent):

 $\bar{X} = [Country, Continent, Percent]$ Renaming: $\bar{Y} = [Code, Name, Percent]$

$\rho[Count$	$\rho[Country \rightarrow Code, Continent \rightarrow Name, Percent \rightarrow Percent](encompasses)$						
Code	Name	Percent					
R	Europe	20					
R	Asia	80					
D	Europe	100					
:							

ssume $r \in Rel(ar{X})$ and	$s\in \operatorname{Rel}(\bar{Y})$ for arbitrary	$ar{X},ar{Y}.$				
	as a shorthand, write \overline{X} v_1, \ldots, v_n and $\mu_2 = w_1$,		$= v_1,$, <i>v</i>	w_n, w_1, \ldots	\ldots, w_m
esult format of $r \bowtie s$: esult relation: $r \bowtie s =$	\overline{XY} . $\{\mu \in Tup(\overline{XY}) \mid \mu[\bar{X}] \in r$	\cdot and $\mu[ar{Y}] \in s\}.$				
Motivation						
· _	$= \emptyset \Rightarrow \text{Cartesian Produc}$ $\overline{Y}) \mid \mu_1 \in r \text{ and } \mu_2 \in s \}.$	$\operatorname{ct} r \bowtie s = r \times s$				
· _			A B	C	D	
$\mathbf{x} \mathbf{s} = \{\mu_1 \mu_2 \in Tup(\overline{X}$	$\overline{Y}) \mid \mu_1 \in r \text{ and } \mu_2 \in s \}.$					
$\mathbf{x} \mathbf{s} = \{\mu_1 \mu_2 \in Tup(\overline{X}$	$\overline{Y}) \mid \mu_1 \in r \text{ and } \mu_2 \in s \}.$		$egin{array}{ccc} 1 & 2 \ 1 & 2 \end{array}$	$a \\ c$	$b \\ d$	
$\times s = \{\mu_1 \mu_2 \in Tup(\overline{X}$	$\overline{Y}) \mid \mu_1 \in r \text{ and } \mu_2 \in s \}.$		$egin{array}{ccc} 1 & 2 \ 1 & 2 \end{array}$	$a \\ c$	$b \\ d$	
$\times s = \{\mu_1 \mu_2 \in Tup(\overline{X}$	$\overline{Y}) \mid \mu_1 \in r \text{ and } \mu_2 \in s \}.$ $s = \frac{C D}{a b}$ $c d$	$r \bowtie s =$	$egin{array}{cccc} 1 & 2 \ 1 & 2 \ 1 & 2 \ 1 & 2 \end{array}$	$a \\ c$	$egin{array}{c} b \ d \ f \end{array}$	
$r \times s = \{\mu_1 \mu_2 \in Tup(\overline{X}$		$r \bowtie s =$	$egin{array}{cccc} 1 & 2 \ 1 & 2 \ 1 & 2 \ 4 & 5 \ \end{array}$	$egin{array}{c} c \\ e \end{array}$	$egin{array}{c} b \ d \ f \ b \end{array}$	

Example 3.7 (Cartesian Product of Continent and Encompasses)

	Contine	nt × encomp	asses	
Name	Area	Continent	Country	Percent
Europe	9562489.6	Europe	Germany	100
Europe	9562489.6	Europe	Russia	20
Europe	9562489.6	Asia	Russia	80
Europe	9562489.6	:	:	:
Africa	3.02547e+07	Europe	Germany	100
Africa	3.02547e+07	Europe	Russia	20
Africa	3.02547e+07	Asia	Russia	80
Africa	3.02547e+07	:	:	:
Asia	4.50953e+07	Europe	Germany	100
Asia	4.50953e+07	Europe	Russia	20
Asia	4.50953e+07	Asia	Russia	80
Asia	4.50953e+07	:	:	:
:	:	:	:	:

Back to the Natural Join

General case $\overline{X} \cap \overline{Y} \neq \emptyset$: shared attribute names constrain the result relation.

Again the definition: $r \bowtie s = \{\mu \in \mathsf{Tup}(\overline{XY}) \mid \mu[\overline{X}] \in r \text{ and } \mu[\overline{Y}] \in s\}.$

(Note: this implies that the tuples $\mu_1 := \mu[\bar{X}] \in r$ and $\mu_2 := \mu[\bar{Y}] \in s$ coincide in the shared attributes $\bar{X} \cap \bar{Y}$)

Example 3.8

Consider encompasses(country,continent,percent) and isMember(organization,country,type):

encompasses				is	Member	
Country	Continent	Percent		Organization	Country	Туре
R	Europe	20		EU	D	member
R	Asia	80		UN	D	member
D	Europe	100		UN	R	member
:	: :	:		:	:	:

encompasses \bowtie is Member = { $\mu \in Tup(country, cont, perc, org, type)$ |

 $\mu[country, cont, perc] \in encompasses \text{ and } \mu[org, country, type] \in isMember\}$

88

Example 3.8 (Continued) $encompasses \bowtie isMember = \{\mu \in Tup(country, cont, perc, org, type) \mid$ $\mu[country, cont, perc] \in encompasses and \mu[org, country, type] \in isMember\}$ start with $(R, Europe, 20) \in encompasses$. check which tuples in *isMember* match: $(UN, R, member) \in isMember matches:$ result: (R, Europe, 20, UN, member) belongs to the result. (some more matches ...) continue with $(R, Asia, 80) \in encompasses$. $(UN, R, member) \in isMember matches:$ result: (R, Asia, 80, UN, member) belongs to the result. (some more matches ...) continue with $(D, Europe, 100) \in encompasses.$ $(EU, D, member) \in isMember matches:$ result: (D, Europe, 100, EU, member) belongs to the result. $(UN, D, member) \in isMember matches:$ result: (D, Europe, 100, UN, member) belongs to the result. (some more matches ...)

Example 3.8 (Continued)

Result:

	encompasses × isMember									
Country	Continent	Percent	Organization	Туре						
R	Europe	20	UN	member						
R	Europe	20	:	:						
R	Asia	80	UN	member						
R	Asia	80	:	:						
D	Europe	100	UN	member						
D	Europe	100	EU	member						
D	Europe	100	:	:						
:	:	:	:	:						

90

Example 3.9 (and Exercise)

Consider the expression

 $continent \bowtie \rho[Country \rightarrow Code, Continent \rightarrow Name, Percent \rightarrow Percent](encompasses)$

Functionalities of the Join

- Combining relations
- Selective functionality: only matching tuples survive (consider joining cities and organizations on headquarters)

DERIVED OPERATORS

Intersection

Assume $r, s \in \operatorname{Rel}(\bar{X})$.

Then, $r \cap s = \{\mu \in \operatorname{Tup}(\bar{X}) \mid \mu \in r \text{ and } \mu \in s\}.$

Theorem 3.1

Intersection can be expressed by difference: $r \cap s = r \setminus (r \setminus s)$.

θ -Join

Combination of Cartesian Product and Selection:

Assume $r \in \text{Rel}(\bar{X})$, and $s \in \text{Rel}(\bar{Y})$, such that $\bar{X} \cap \bar{Y} = \emptyset$, and $A \theta B$ a selection condition.

 $r \bowtie_{A\theta B} s = \{\mu \in \mathsf{Tup}(\overline{XY}) \mid \mu[\overline{X}] \in r, \ \mu[\overline{Y}] \in s \text{ and } \mu \text{ satisfies } A\theta B\} = \sigma[A\theta B](r \times s).$

Equi-Join

 θ -join that uses the "="-predicate.

Example 3.10 (and Exercise)

Consider again Example 3.7:

 $Continent \bowtie encompasses = Continent \times encompasses$ contained tuples that did not really make sense.

 $(Continent \bowtie encompasses)_{continent=name}$ would be more useful.

Furthermore, consider

 $\pi[continent, area, code, percent]((Continent \bowtie encompasses)_{continent=name})$:

- removes the now redundant "name" column,
- is equivalent to the natural join $(\rho[name \rightarrow continent](continent)) \bowtie encompasses.$

92

Semi-Join

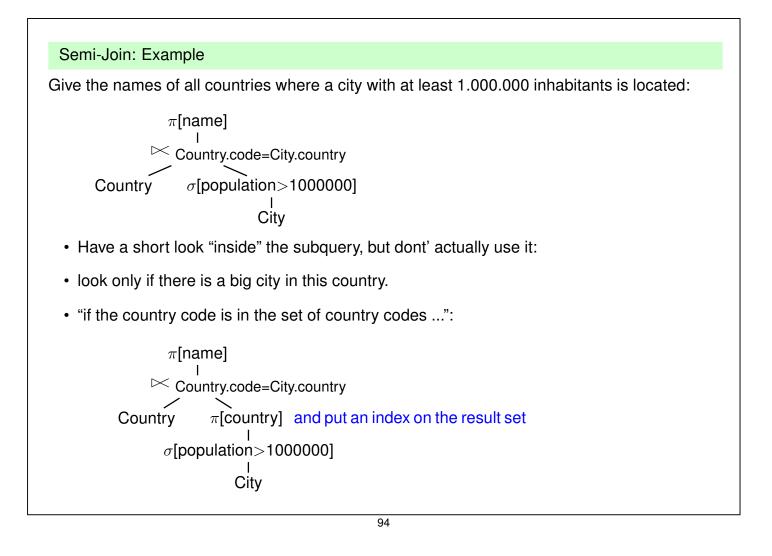
- · recall: joins combine, but are also selective
- semi-join acts like a selection on a relation r: selection condition not given as a boolean formula on the attributes of r, but by "looking into" another relation (a subquery)

Assume $r \in \operatorname{Rel}(\bar{X})$ and $s \in \operatorname{Rel}(\bar{Y})$ such that $\bar{X} \cap \bar{Y} \neq \emptyset$.

Result format of $r \bowtie s$: \bar{X} Result relation: $r \bowtie s = \pi[\bar{X}](r \bowtie s)$

The semi-join $r \bowtie s$ does *not* return the join, but checks which tuples of r "survive" the join with s (i.e., "which find a counterpart in s wrt. the shared attributes"):

- Used with subqueries: (main query) \bowtie (subquery)
- $r \bowtie s \subseteq r$
- Used for optimizing the evaluation of joins (often in combination with indexes).



Outer Join

· The join is the operator for combining relations

Example 3.11

• Persons work in divisions of a company, tools are assigned to the divisions:

И	/orks	Тос	Tools			Works 🖂 Tools			
Person	Division	Division	ΤοοΙ		Person	Division	ΤοοΙ		
John	Production	Production	hammer		John	Production	hammer		
Bill	Production	Research	pen		Bill	Production	hammer		
John	Research	Research	computer		John	Research	pen		
Mary	Research	Admin.	typewriter		John	Research	computer		
Sue	Sales			-	Mary	Research	pen		

- join contains no tuple that describes Sue
- join contains no tuple that describes the administration or sales division
- · join contains no tuple that shows that there is a typewriter

computer

Mary

Research

Outer Join

Assume $r \in \operatorname{Rel}(\bar{X})$ and $s \in \operatorname{Rel}(\bar{Y})$.

Result format of $r \exists \bowtie v s: \overline{XY}$

The outer join extends the "inner" join with all tuples that have no counterpart in the other relation (filled with null values):

Example 3.12 (Outer Join)

Consider again Example 3.11

Works ⊐x⊏ Tools				
Person	Division	ΤοοΙ		
John	Production	hammer		
Bill	Production	hammer		
John	Research	pen		
John	Research	computer		
Mary	Research	pen		
Mary	Research	computer		
Sue	Sales	NULL		
NULL	Admin	typewriter		

Works 🖂 Tools			
Person Division			
John	Production		
Bill	Production		
John	Research		
Mary	Research		

Works 🖂 Tools		
Division	ΤοοΙ	
Production	hammer	
Research	pen	
Research	computer	

96

Formally, the result relation $r \implies s$ is defined as follows: $J = r \bowtie s$ — take the ("inner") join as base $r_0 = r \setminus \pi[\overline{X}](J) = r \setminus (r \bowtie s) - r$ -tuples that "are missing" $s_0 = s \setminus \pi[\bar{Y}](J) = s \setminus (r \bowtie s)$ — s-tuples that "are missing" $Y_0 = ar{Y} \setminus ar{X}, X_0 = ar{X} \setminus ar{Y}$ Let $\mu_s \in \text{Tup}(Y_0), \mu_r \in \text{Tup}(X_0)$ such that μ_1, μ_2 consist only of *null* values $r \sqsupset s = J \cup (r_0 \times \{\mu_s\}) \cup (s_0 \times \{\mu_r\}).$ Example 3.12 (Continued) For the above example, $J = Works \bowtie Tools$ $r_0 = [$ "Sue", "Sales"], $s_0 = [$ "Admin", "Typewriter"] $Y_0 = Tool, X_0 = Person$ Tool Person $\mu_1 =$ $\mu_2 =$ null null Division **Division** Person Tool Person Tool $r_0 \times \{\mu_1\} =$ $s_0 \times \{\mu_2\} =$ Sue Sales null null Admin Typewriter

Left and Right Outer Join

Analogously to the (full) outer join:

- $r \rightrightarrows s = J \cup (r_0 \times \{\mu_s\})$.
- $r \bowtie s = J \cup (s_0 \times \{\mu_r\})$.

Generalized Natural Join

Assume $r_i \subseteq \operatorname{Tup}(\bar{X}_i)$.

Result format: $\bigcup_{i=1}^{n} \bar{X}_i$ Result relation: $\bowtie_{i=1}^{n} r_i = \{\mu \in \mathsf{Tup}(\bigcup_{i=1}^{n} \bar{X}_i) \mid \mu[\bar{X}_i] \in r_i\}$

Exercise 3.1

Prove that the natural join is associative (which makes the generalized natural join well-defined):

$$\bowtie_{i=1}^{n} r_{i} = ((\dots((r_{1} \bowtie r_{2}) \bowtie r_{3}) \bowtie \dots) \bowtie r_{n}))$$
$$= (r_{1} \bowtie (r_{2} \dots (r_{n-1} \bowtie r_{n}) \dots))$$

98

Relational Division

Assume $r \in \text{Rel}(\bar{X})$ and $s \in \text{Rel}(\bar{Y})$ such that $\bar{Y} \subsetneq \bar{X}$. Result format of $r \div s$: $\bar{Z} = \bar{X} \setminus \bar{Y}$.

The result relation $r \div s$ is specified as "all \overline{Z} -values that occur in $\pi[\overline{Z}](r)$, with the additional condition that they occur in r together with each of the \overline{Y} values that occur in s".

Formally,

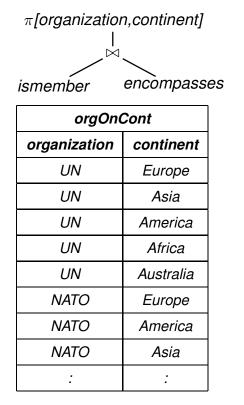
$$\begin{split} r \div s &= \{ \mu \in \operatorname{Tup}(\bar{Z}) \mid \{ \mu \} \times s \subseteq r \} = \pi[\bar{Z}](r) \setminus \pi[\bar{Z}]((\pi[\bar{Z}](r) \times s) \setminus r). \end{split}$$
 this implies that $\mu \in \pi[\bar{Z}](r)$

- Simple observation: π[Z̄](r) ⊇ r ÷ s.
 This constrains the set of possible results.
- Often, \bar{Z} and \bar{Y} correspond to the keys of relations that represent the instances of entity types.

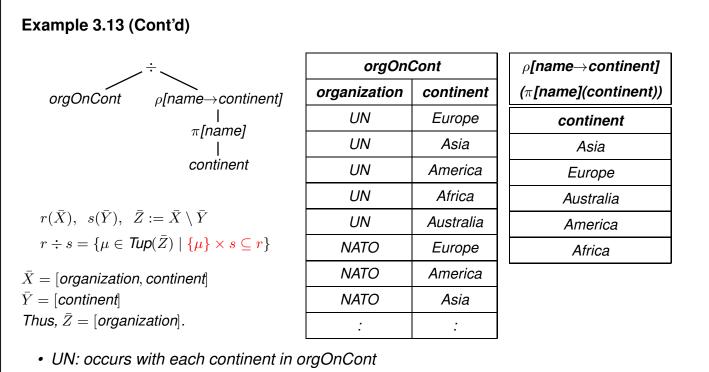
Example 3.13 (Relational Division)

Compute those organizations that have at least one member on each continent:

First step: which organizations have (some) member on which continents:



SELECT DISTINCT i.organization, e.continent				
FROM ismember i, encompasses e				
WHERE i.country=e.country				
ORDER by 1				



- \Rightarrow belongs to the result.
- NATO: does not occur with each continent in orgOnCont
 ⇒ does not belong to the result.

Example 3.13 (Cont'd)

Consider again the formal algebraic characterization of Division:

 $r \div s = \{ \mu \in \mathit{Tup}(\bar{Z}) \mid \{ \mu \} \times s \subseteq r \} = \pi[\bar{Z}](r) \setminus \pi[\bar{Z}]((\pi[\bar{Z}](r) \times s) \setminus r).$

- 1. r = orgOnCont, $s = \pi[name](continent)$, Z = Country.
- 2. $(\pi[\overline{Z}](r) \times s)$ contains all tuples of organizations with each of the continents, e.g., (NATO, Europe), (NATO, Asia), (NATO, America), (NATO, Africa), (NATO, Australia).
- 3. $((\pi[\overline{Z}](r) \times s) \setminus r)$ contains all such tuples which are not "valid", e.g., (NATO,Africa).
- 4. projecting this to the organizations yields all those organizations where a non-valid tuple has been generated in (2), i.e., that have no member on some continent (e.g., NATO).
- 5. $\pi[\overline{Z}](r)$ is the list of all organizations ...
- 6. ... subtracting those computed in (4) yields those that have a member on each continent.

102

Expressions					
 inductively defined: combining expressions by operators 					
Example 3.14 The names of all cities where (capitals of a member country o	, , , , , , , , , , , , , , , , , , ,	tion are located, and (ii) tl	hat are		
As a tree:					
π [City]					
· · · · · · · · · · · · · · · · · · ·					
π [Abbrev,City,Prov,Country]	ρ [Capital \rightarrow City]				
Organization	π [Abbrev,Capital,Prov,Country]				
\sim					
	ho[Organization $ ightarrow$ Abbrev]	ρ [Code $ ightarrow$ Country]			
	isMember	Country			
Note that there are many equiv	alent expressions.				

EXPRESSIONS IN THE RELATIONAL ALGEBRA AS QUERIES

Let $\mathbf{R} = \{R_1, \dots, R_k\}$ a set of relation schemata of the form $R_i(\bar{X}_i)$. As already described, an **database state** to \mathbf{R} is a **structure** S that maps every relation name R_i in \mathbf{R} to a relation $S(R_i) \subseteq \text{Tup}(\bar{X}_i)$

Every algebra expression Q defines a **query** against the state S of the database:

- For given \mathbf{R} , Q is assigned a **format** Σ_Q (the format of the answer).
- For every database state S, S(Q) ⊆ Tup(Σ_Q) is a relation over Σ_Q, called the answer set for Q wrt. S.
- S(Q) can be computed according to the inductive definition, starting with the innermost (atomic) subexpressions.
- Thus, the relational algebra has a functional semantics.

104

SUMMARY: INDUCTIVE DEFINITION OF EXPRESSIONS

Atomic Expressions

For an arbitrary attribute A and a constant a ∈ dom(A), the constant relation A : {a} is an algebra expression.

 $\Sigma_{A:\{a\}} = [A] \text{ and } S(A:\{a\}) = A:\{a\}$

• Every relation name R is an algebra expression.

 $\Sigma_R = \overline{X}$ and $\mathcal{S}(R) = \mathcal{S}(R)$.

$\label{eq:started_st$

106

INDUCTIVE DEFINITION OF EXPRESSIONS (CONT'D)

Selection

For a selection condition α over Σ_{Q_1} , $Q = \sigma[\alpha]Q_1$ is the **selection** from Q_1 wrt. α .

 $\Sigma_Q = \Sigma_{Q_1}$ and $\mathcal{S}(Q) = \sigma[\alpha](\mathcal{S}(Q_1)).$

Natural Join

 $Q = (Q_1 \bowtie Q_2)$ is the **(natural) join** of Q_1 and Q_2 .

 $\Sigma_Q = \Sigma_{Q_1} \cup \Sigma_{Q_2}$ and $\mathcal{S}(Q) = \mathcal{S}(Q_1) \bowtie \mathcal{S}(Q_2)$.

Renaming

For $\Sigma_{Q_1} = \{A_1, \ldots, A_k\}$ and $\{B_1, \ldots, B_k\}$ a set of attributes, $\rho[A_1 \to B_1, \ldots, A_k \to B_k]Q_1$ is the **renaming** of Q_1

 $\Sigma_Q = \{B_1, \dots, B_k\}$ and $\mathcal{S}(Q) = \{\mu[A_1 \to B_1, \dots, A_k \to B_k] \mid \mu \in \mathcal{S}(Q_1)\}.$

Example

Example 3.15

Professor(PNr, Name, Office), Course(CNr, Credits, CName) teach(PNr, CNr), examine(PNr, CNr)

• For each professor (name) determine the courses he gives (CName).

 π [Name, CName] ((Professor \bowtie teach) \bowtie Course)

• For each professor (name) determine the courses (CName) that he teaches, but that he does not examine.

 $\pi[\mathsf{Name}, \mathsf{CName}]((\\ (\pi[\mathsf{Name}, \mathsf{CNr}](\mathsf{Professor} \bowtie \mathsf{teach})) \\ \\ \\ (\pi[\mathsf{Name}, \mathsf{CNr}](\mathsf{Professor} \bowtie \mathsf{examine})) \\) \bowtie \mathsf{Course})$

Simpler expression:

```
\pi [Name, CName] ((Professor \bowtie (teach \setminus examine)) \bowtie Course)
```

108

EQUIVALENCE OF EXPRESSIONS

Algebra expressions Q, Q' are called **equivalent**, $Q \equiv Q'$, if and only if for all structures S, S(Q) = S(Q').

Equivalence of expressions is the basis for algebraic optimization.

Let attr(α) the set of attributes that occur in a selection condition α , and Q, Q_1, Q_2, \ldots expressions with formats X, X_1, \ldots

Projections

•
$$\overline{Z}, \overline{Y} \subseteq \overline{X} \Rightarrow \pi[\overline{Z}](\pi[\overline{Y}](Q)) \equiv \pi[\overline{Z} \cap \overline{Y}](Q).$$

• $\bar{Z} \subseteq \bar{Y} \subseteq \bar{X} \Rightarrow \pi[\bar{Z}](\pi[\bar{Y}](Q)) \equiv \pi[\bar{Z}](Q).$

Selections

- $\sigma[\alpha_1](\sigma[\alpha_2](Q)) \equiv \sigma[\alpha_2](\sigma[\alpha_1](Q)) \equiv \sigma[\alpha_1 \land \alpha_2](Q)).$
- $\operatorname{attr}(\alpha) \subseteq \bar{Y} \subseteq \bar{X} \Rightarrow \pi[\bar{Y}](\sigma[\alpha](Q)) \equiv \sigma[\alpha](\pi[\bar{Y}](Q)).$

Joins

- $Q_1 \bowtie Q_2 \equiv Q_2 \bowtie Q_1.$
- $(Q_1 \bowtie Q_2) \bowtie Q_3 \equiv Q_1 \bowtie (Q_2 \bowtie Q_3).$

EQUIVALENCE OF EXPRESSIONS (CONT'D)

Joins and other Operations

- $\operatorname{attr}(\alpha) \subseteq \bar{X}_1 \cap \bar{X}_2 \Rightarrow \sigma[\alpha](Q_1 \bowtie Q_2) \equiv \sigma[\alpha](Q_1) \bowtie \sigma[\alpha](Q_2).$
- $\operatorname{attr}(\alpha) \subseteq \bar{X}_1, \operatorname{attr}(\alpha) \cap \bar{X}_2 = \emptyset \Rightarrow \sigma[\alpha](Q_1 \bowtie Q_2) \equiv \sigma[\alpha](Q_1) \bowtie Q_2.$
- Assume $V \subseteq \overline{X_1 X_2}$ and let $W = \overline{X_1} \cap \overline{VX_2}$, $U = \overline{X_2} \cap \overline{VX_1}$. Then, $\pi[V](Q_1 \bowtie Q_2) = \pi[V](\pi[W](Q_1) \bowtie \pi[U](Q_2));$
- $\bar{X}_2 = \bar{X}_3 \Rightarrow Q_1 \bowtie (Q_2 \text{ op } Q_3) = (Q_1 \bowtie Q_2) \text{ op } (Q_1 \bowtie Q_3) \text{ where } \text{ op } \in \{\cup, -\}.$

Exercise 3.2

Prove some of the equalities (use the definitions given on the "Base Operators" slide).

110

EXPRESSIVE POWER OF THE ALGEBRA

Transitive Closure

The transitive closure of a binary relation R, denoted by R^* is defined as follows:

$$\begin{array}{rcl} R^1 &=& R\\ R^{n+1} &=& \{(a,b)| \text{ there is an } s \text{ s.t. } (a,x) \in R^n \text{ and } (x,b) \in R \}\\ R^* &=& \displaystyle \bigcup_{1..\infty} R^n \end{array}$$

Examples:

- child(x,y): child* = descendant
- flight connections
- flows_into of rivers in MONDIAL

Theorem 3.2

There is no expression of the relational algebra that computes the transitive closure of arbitrary binary relations r.

EXAMPLES

Time to play. Perhaps postpone examples after comparison with SQL (next subsections)

Aspects

- join as "extending" operation (cartesian product "all pairs of X and Y such that ...")
- equijoin as "restricting" operation
- natural join/equijoin in many cases along key/foreign key relationships
- relational division (in case of queries of the style "return all X that are in a given relation with all Y such that ...")