Chapter 8

Relational Database Languages: Relational Calculus

Overview

- Described up to now: relational algebra, SQL
- the relational calculus is a specialization of the first-order calculus, tailored to relational databases.
- straightforward: the only structuring means of relational databases are relations - each relation can be seen as an interpretation of a predicate.
- there exists a declarative semantics.

8.1 First-Order Logic and the Relational Calculus

The relational calculus is a specialization of first-order logic.
(This section can be skipped or compressed depending on the knowledge of the participants)

8.1.1 Syntax

- first-order language contains a set of distinguished symbols:
- "(" and ")", logical symbols $\neg, \wedge, \vee, \rightarrow$, quantifiers \forall, \exists,
- an infinite set of variables $X, Y, X_{1}, X_{2}, \ldots$.
- An individual first-order language is then given by its signature $\Sigma . \Sigma$ contains function symbols and predicate symbols, each of them with a given arity.

For databases:

- the relation names are the predicate symbols (with arity), e.g. continent/2, encompasses/3, etc.
- there are only 0 -ary function symbols, i.e., constants.
- thus, the database schema \mathbf{R} is the signature.

Syntax (Cont'd).

Terms

The set of terms over Σ is defined inductively as

- each variable is a term,
- for every function symbol $f \in \Sigma$ with arity n and terms t_{1}, \ldots, t_{n}, also $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.

0 -ary function symbols: c, 1,2,3,4, "Berlin",...
Example: for plus/2, the following are terms: plus $(3,4)$, plus $(p l u s(1,2), 4), p l u s(X, 2)$.

- ground terms are terms without variables.

For databases:

- since there are no function symbols,
- the only terms are the constants and variables
e.g., 1, 2, "D", "Germany", X, Y, etc.

Syntax (Cont'd): Formulas

Formulas are built inductively (using the above-mentioned special symbols) as follows:

Atomic Formulas

(1) For a predicate symbol (i.e., a relation name) R of arity k, and terms t_{1}, \ldots, t_{k}, $R\left(t_{1}, \ldots, t_{k}\right)$ is a formula.
(2) (for databases only, as special predicates)

A selection condition is an expression of the form $t_{1} \theta t_{2}$ where t_{1}, t_{2} are terms, and θ is a comparison operator in $\{=, \neq, \leq,<, \geq,>\}$.
Every selection condition is a formula.
(both are also called positive literals)

For databases:

- the atomic formulas are the predicates built over relation names and these constants, e.g.,
continent("Asia",4.5E7), encompasses("R","Asia",X), country(N,CC,Cap,Prov,Pop,A).
- comparison predicates (i.e., the "selection conditions") are atomic formulas, e.g., $X=$ "Asia", $Y>10.000 .000$ etc.

Syntax (Cont'd).

Compound Formulas

(3) For a formula F, also $\neg F$ is a formula. If F is an atom, $\neg F$ is called a negative literal.
(4) For a variable X and a formula $F, \forall X: F$ and $\exists F: X$ are formulas. F is called the scope of \exists or \forall, respectively.
(5) For formulas F and G, the conjunction $F \wedge G$ and the disjunction $F \vee G$ are formulas.

For formulas F and G, where G (regarded as a string) is contained in F, G is a subformula of F.

The usual priority rules apply (allowing to omit some parentheses).

- instead of $F \vee \neg G$, the implication syntax $F \leftarrow G$ or $G \rightarrow F$ can be used, and
- $(F \rightarrow G) \wedge(F \leftarrow G)$ is denoted by the equivalence $F \leftrightarrow G$.

Syntax (Cont'd).

Bound and Free Variables

An occurrence of a variable X in a formula is

- bound (by a quantifier) if the occurrence is in a formula A inside $\exists X: A$ or $\forall X: A$ (i.e., in the scope of an appropriate quantifier).
- free otherwise, i.e., if it is not bound by any quantifier.

Formulas without free variables are called closed.

Example:

- continent("Asia", X): X is free.
- continent("Asia", $X) \wedge X>10.000 .000: X$ is free.
- $\exists X:($ continent("Asia", $X) \wedge X>10.000 .000): ~ X$ is bound.

The formula is closed.

- $\exists X$: (continent $(X, Y)): X$ is bound, Y is free.
- $\forall Y:(\exists X$: $(\operatorname{continent}(X, Y))): X$ and Y are bound.

The formula is closed.

Outlook:

- closed formulas either hold in a database state, or they do not hold.
- free variables represent answers to queries:
?- continent("Asia", X) means "for which value x does continent("Asia", x) hold?" Answer: for $x=4.5 E 7$.
- $\exists Y$: (continent (X, Y)): means
"for which values x is there an y such that $\operatorname{continent}(x, y)$ holds? - we are not interested in the value of y "
The answer are all names of continents, i.e., that x can be "Asia", "Europe", or ...
... so we have to evaluate formulas ("semantics").

8.1.2 Semantics

The semantics of first-order logic is given by first-order structures over the signature:
First-Order Structure
A first-order structure $\mathcal{S}=(I, \mathcal{D})$ over a signature Σ consists of a nonempty set \mathcal{D} (domain) and an interpretation I of the signature symbols over \mathcal{D} which maps

- every constant c to an element $I(c) \in \mathcal{D}$,
- every n-ary function symbol f to an n-ary function $I(f): \mathcal{D}^{n} \rightarrow \mathcal{D}$,
- every n-ary predicate symbol p to an n-ary relation $I(p) \subseteq \mathcal{D}^{n}$.

For Databases:

- no function symbols with arity >0

First-Order Structures: An Example

Example 8.1 (First-Order Structure)

Signature: constant symbols: zero, one, two, three, four, five
predicate symbols: green $/ 1$, red $/ 1$, sees $/ 2$
function symbols: to_right/1, plus/2

Structure \mathcal{S} :

Domain $\mathcal{D}=\{0,1,2,3,4,5\}$
Interpretation of the signature:

$$
\begin{aligned}
& I(\text { zero })=0, I(\text { one })=1, \ldots, I(\text { five })=5 \\
& I(\text { green })=\{(2),(5)\}, I(\text { red })=\{(0),(1),(3),(4)\} \\
& I(\text { sees })=\{(0,3),(1,4),(2,5),(3,0),(4,1),(5,2)\} \\
& I(\text { to_right })=\{(0) \mapsto(1),(1) \mapsto(2),(2) \mapsto(3), \\
& \quad(3) \mapsto(4),(4) \mapsto(5),(5) \mapsto(0)\} \\
& I(\text { plus })=\{(n, m) \mapsto(n+m) \bmod 6 \mid n, m \in \mathcal{D}\}
\end{aligned}
$$

Terms: one, to_right(four), to_right(to_right $(X))$, to_right(to_right(to_right(four))), plus $(X$, to_right(zero) $)$, to_right(plus(to_right (four), five))
Atomic Formulas: green(1), red(to_right(to_right(to_right(four)))), sees (X, Y),
$\operatorname{sees}\left(X, t o _r i g h t(Z)\right), \operatorname{sees}\left(t o _r i g h t\left(t o _r i g h t(f o u r)\right)\right.$, to_right(one)), plus(to_right $\left(t o _r i g h t(f o u r)\right)$, to_right $($ one $\left.)\right)=$ to_right $($ three $)$

Summary: Notions for Databases

- a set \mathbf{R} of relational schemata; logically spoken, \mathbf{R} is the signature,
- a database state is a structure \mathcal{S} over \mathbf{R}
- \mathcal{D} contains all domains of attributes of the relation schemata,
- for every single relation schema $R=(\bar{X})$ where $\bar{X}=\left\{A_{1}, \ldots, A_{k}\right\}$, we write $R\left[A_{1}, \ldots, A_{k}\right] . k$ is the arity of the relation name R.
- relation names are the predicate symbols. They are interpreted by relations, e.g.,

I(encompasses)
(which we also write as \mathcal{S} (encompasses)).
For Databases:

- no function symbols with arity >0
- constants are interpreted "by themselves":
$I(4)=4, I$ ("Asia") = "Asia"
- care for domains of attributes.

Evaluation of Terms and Formulas

Terms and formulas must be evaluated under a given interpretation - i.e., wrt. a given database state \mathcal{S}.

- Terms can contain variables.
- variables are not interpreted by \mathcal{S}.

A variable assignment over a universe \mathcal{D} is a mapping

$$
\beta: \text { Variables } \rightarrow \mathcal{D} .
$$

For a variable assignment β, a variable X, and $d \in \mathcal{D}$, the modified variable assignment β_{X}^{d} is identical with β except that it assigns d to the variable X :

$$
\beta_{X}^{d}= \begin{cases}Y \mapsto \beta(Y) & \text { for } Y \neq X \\ X \mapsto d & \text { otherwise }\end{cases}
$$

Example 8.2

For variables $X, Y, Z, \beta=\{X \mapsto 1, Y \mapsto$ "Asia", $Z \mapsto 3.14\}$ is a variable assignment. $\beta_{X}^{3}=\{X \mapsto 3, Y \mapsto$ "Asia", $Z \mapsto 3.14\}$.

Evaluation of Terms

Terms and formulas are interpreted

- under a given interpretation \mathcal{S}, and
- wrt. a given variable assignment β.

For Databases:

- \mathcal{S} is a database state.
- Σ is a purely relational signature,
- no function symbols with arity >0, no nontrivial terms,
- constants are interpreted "by themselves".

Every interpretation \mathcal{S} together with a variable assignment β induces an evaluation \mathcal{S} of terms $(\mathcal{S}(t, \beta) \in \mathcal{D})$ and tuples of terms:

For Databases: $\mathcal{S}(x, \beta):=\beta(x)$ for a variable x,
$\mathcal{S}(c, \beta):=c \quad$ for a constant c.

Evaluation of Terms

Relevant only for full first-order logic:

$$
\begin{aligned}
& \mathcal{S}(x, \beta):=\beta(x) \quad \text { for a variable } x \\
& \mathcal{S}\left(f\left(t_{1}, \ldots, t_{n}\right), \beta\right):=(I(f))\left(\mathcal{S}\left(t_{1}, \beta\right), \ldots, \mathcal{S}\left(t_{n}, \beta\right)\right)
\end{aligned}
$$

for a function symbol $f \in \Sigma$ with arity n and terms t_{1}, \ldots, t_{n}.

Example 8.3 (Evaluation of Terms)

Consider again Example 8.1.

- For variable-free terms: $\beta=\emptyset$.
- $\mathcal{S}($ one,$\emptyset)=I($ one $)=1$
- $\mathcal{S}($ to_right $($ four $), \emptyset)=I($ to_right $(\mathcal{S}($ four,$\emptyset))=I($ to_right $(4))=5$
- $\mathcal{S}\left(t o _r i g h t\left(t o _r i g h t\left(t o _r i g h t(f o u r)\right)\right), \emptyset\right)=I\left(t o _r i g h t\left(\mathcal{S}\left(t o _r i g h t\left(t o _r i g h t(f o u r)\right), \emptyset\right)\right)\right)=$ $I\left(\right.$ to_right $\left.\left(I\left(t o _r i g h t\left(\mathcal{S}\left(t o _r i g h t(f o u r), \emptyset\right)\right)\right)\right)\right)=I\left(t o _r i g h t\left(I\left(t o _r i g h t(5)\right)\right)\right)=$ $I\left(t o _r i g h t(6)\right)=1$

Example 8.3 (Continued)

- Let $\beta=\{X \mapsto 3\}$.
$\mathcal{S}\left(t o _r i g h t\left(t o _r i g h t(X)\right), \beta\right)=I\left(t o _r i g h t\left(\mathcal{S}\left(t o _r i g h t(X), \beta\right)\right)\right)=$
$I\left(t o _r i g h t\left(I\left(t o _r i g h t(\mathcal{S}(X, \beta))\right)\right)\right)=I\left(t o _r i g h t\left(I\left(t o _r i g h t(\beta(X))\right)\right)\right)=$ $I($ to_right $(I($ to_right $(3))))=I($ to_right $(4))=5$
- Let $\beta=\{X \mapsto 3\}$.
$\mathcal{S}(\operatorname{plus}(X$, to_right $(z e r o)), \emptyset)=I(\operatorname{plus}(\mathcal{S}(X, \beta), \mathcal{S}($ to_right $(z e r o), \beta)))=$ $I(\operatorname{plus}(\beta(X), I($ to_right $(\mathcal{S}(z e r o, \beta)))))=I($ plus $(3, I($ to_right $(I(z e r o)))))=$ $I(\operatorname{plus}(3, I($ to_right $(0))))=I(\operatorname{plus}(3,1))=4$

Evaluation of Formulas

Formulas can either hold, or not hold in a database state.

Truth Value

Let F a formula, \mathcal{S} an interpretation, and β a variable assignment of the free variables in F (denoted by free (F)).

Then we write $\mathcal{S} \models_{\beta} F$ if " F is true in \mathcal{S} wrt. β ".
Formally, \models is defined inductively.

Truth Values of Formulas: Inductive Definition

Motivation: variable-free atoms
For an atom $R\left(a_{1}, \ldots, a_{k}\right)$, where $a_{i}, 1 \leq i \leq k$ are constants,

$$
R\left(a_{1}, \ldots, a_{k}\right) \text { is true in } \mathcal{S} \text { if and only if }\left(I\left(a_{1}\right), \ldots, I\left(a_{k}\right)\right) \in \mathcal{S}(R) .
$$

Otherwise, $R\left(a_{1}, \ldots, a_{k}\right)$ is false in \mathcal{S}.

Base Case: Atomic Formulas

The truth value of an atom $R\left(t_{1}, \ldots, t_{k}\right)$, where $t_{i}, 1 \leq i \leq k$ are terms, is given as

$$
\mathcal{S} \models_{\beta} R\left(t_{1}, \ldots, t_{k}\right) \quad \text { if and only if }\left(\mathcal{S}\left(t_{1}\right), \ldots, \mathcal{S}\left(t_{k}\right)\right) \in \mathcal{S}(R) .
$$

For Databases:

- the t_{i} can only be constants or variables.

Truth Values of Formulas: Inductive Definition

(2) $t_{1} \theta t_{2}$ with θ a comparison operator in $\{=, \neq, \leq,<, \geq,>\}$:
$\mathcal{S} \models_{\beta} t_{1} \theta t_{2}$ if and only if $\mathcal{S}\left(t_{1}, \beta\right) \theta \mathcal{S}\left(t_{2}, \beta\right)$ holds.
(3) $\mathcal{S} \models_{\beta} \neg G$ if and only if $\mathcal{S} \not \models_{\beta} G$.
(4) $\mathcal{S} \models_{\beta} G \wedge H$ if and only if $\mathcal{S} \models_{\beta} G$ and $\mathcal{S} \models_{\beta} H$.
(5) $\mathcal{S} \models_{\beta} G \vee H$ if and only if $\mathcal{S} \models_{\beta} G$ or $\mathcal{S} \models_{\beta} H$.
(6) $\mathcal{S} \models_{\beta} \forall X G$ if and only if for all $d \in \mathcal{D}, \mathcal{S} \models_{\beta_{X}^{d}} G$.
(7) $\mathcal{S} \models_{\beta} \exists X G$ if and only if for some $d \in \mathcal{D}, \mathcal{S} \models_{\beta_{X}^{d}} G$.

Example 8.4 (Evaluation of Atomic Formulas)

Consider again Example 8.1.

- For variable-free formulas, let $\beta=\emptyset$
- $\mathcal{S} \models_{\emptyset} \operatorname{green}(1) \Leftrightarrow(1) \in I($ green $)$ - which is not the case. Thus, $\mathcal{S} \not \models_{\emptyset} \operatorname{green}(1)$.
- $\mathcal{S} \models_{\emptyset} r e d\left(t o _r i g h t\left(t o _r i g h t\left(t o _r i g h t(f o u r)\right)\right)\right) \Leftrightarrow$

$$
(\mathcal{S}(\text { to_right }(\text { to_right }(\text { to_right }(\text { four }))), \emptyset)) \in I(\text { red }) \Leftrightarrow(6) \in I(\text { red })
$$

which is the case. Thus, $\mathcal{S} \models_{\emptyset}$ red(to_right(to_right(to_right $\left.\left.(f o u r)\right)\right)$).

- Let $\beta=\{X \mapsto 3, Y \mapsto 5\}$.
$\mathcal{S} \models_{\beta} \operatorname{sees}(X, Y) \Leftrightarrow(\mathcal{S}(X, \beta), \mathcal{S}(Y, \beta)) \in I($ sees $) \Leftrightarrow(3,5) \in I($ sees $)$
which is not the case.
- Again, $\beta=\{X \mapsto 3, Y \mapsto 5\}$.
$\mathcal{S} \models_{\beta} \operatorname{sees}(X$, to_right $(Y)) \Leftrightarrow(\mathcal{S}(X, \beta), \mathcal{S}($ to_right $(Y), \beta)) \in I($ sees $) \Leftrightarrow(3,6) \in I($ sees $)$ which is the case.
-

$$
\begin{aligned}
& \mathcal{S} \models_{\beta} \text { plus }(\text { to_right }(\text { to_right }(\text { four })), \text { to_right }(\text { one }))=\text { to_right }(\text { three }) \Leftrightarrow \\
& \mathcal{S}(\text { plus }(\text { to_right }(\text { to_right }(\text { four })), \text { to_right }(\text { one })), \emptyset)=\mathcal{S}(\text { to_right }(\text { three }), \emptyset) \Leftrightarrow 2=4
\end{aligned}
$$

which is not the case.

Example 8.5 (Evaluation of Compound Formulas)

Consider again Example 8.1.

- $\mathcal{S} \models_{\emptyset} \exists X: \operatorname{red}(X) \Leftrightarrow$
there is a $d \in \mathcal{D}$ such that $\mathcal{S} \models_{\emptyset_{X}^{d}} \operatorname{red}(X) \Leftrightarrow$ there is a $d \in \mathcal{D}$ s.t. $\mathcal{S} \models_{\{X \mapsto d\}} \operatorname{red}(X)$ Since we have shown above that $\mathcal{S} \models_{\emptyset} \operatorname{red}(6)$, this is the case.
- $\mathcal{S} \models_{\emptyset} \forall X: \operatorname{green}(X) \Leftrightarrow$
for all $d \in \mathcal{D}, \mathcal{S} \models_{\emptyset_{X}^{d}} \operatorname{green}(X) \Leftrightarrow$ for all $d \in \mathcal{D}, \mathcal{S} \models_{\{X \mapsto d\}} \operatorname{green}(X)$
Since we have shown above that $\mathcal{S} \not \vDash_{\emptyset}$ green (1) this is not the case.
- $\mathcal{S} \models_{\emptyset} \forall X:(\operatorname{green}(X) \vee \operatorname{red}(X)) \Leftrightarrow$ for all $d \in \mathcal{D}, \mathcal{S} \models_{\{X \mapsto d\}}(\operatorname{green}(X) \vee \operatorname{red}(X))$. One has now to check whether $\mathcal{S} \models_{\{X \mapsto d\}}(\operatorname{green}(X) \vee \operatorname{red}(X))$ for all $d \in$ domain. We do it for $d=3$:

$$
\begin{aligned}
& \mathcal{S} \models_{\{X \mapsto 3\}}(\operatorname{green}(X) \vee \operatorname{red}(X)) \Leftrightarrow \\
& \mathcal{S} \models_{\{X \mapsto 3\}} \operatorname{green}(X) \operatorname{or} \mathcal{S} \models_{\{X \mapsto 3\}} \operatorname{red}(X) \Leftrightarrow \\
&(\mathcal{S}(X,\{X \mapsto 3\})) \in I(\text { green }) \operatorname{or}(\mathcal{S}(X,\{X \mapsto 3\})) \in I(\text { red }) \Leftrightarrow \\
&(3) \in I(\text { green }) \operatorname{or}(3) \in I(\text { red })
\end{aligned}
$$

which is the case since $(3) \in I(r e d)$.

- Similarly, $\mathcal{S} \not \models_{\emptyset} \forall X:(\operatorname{green}(X) \wedge \operatorname{red}(X))$

8.2 Formulas as Queries

Formulas can be seen as queries:

- For a formula F with free variables $X_{1}, \ldots, X_{n}, n \geq 1$, we write $F\left(X_{1}, \ldots, X_{n}\right)$.
- each formula $F\left(X_{1}, \ldots, X_{n}\right)$ defines - dependent on a given interpretation \mathcal{S} - an answer relation $\mathcal{S}\left(F\left(X_{1}, \ldots, X_{n}\right)\right)$.
The answer set to $F\left(X_{1}, \ldots, X_{n}\right)$ wrt. \mathcal{S} is the set of tuples $\left(a_{1}, \ldots, a_{n}\right), a_{i} \in \mathcal{D}$, $1 \leq i \leq n$, such that F is true in \mathcal{S} when assigning each of the variables X_{i} to the constant $a_{i}, 1 \leq i \leq n$.

Formally:
$\mathcal{S}(F)=\left\{\left(\beta\left(X_{1}\right), \ldots, \beta\left(X_{n}\right)\right) \mid \mathcal{S} \models_{\beta} F\right.$ where β is a variable assignment of $\left.\operatorname{free}(F)\right\}$.

- for $n=0$, the answer to F is true if $\mathcal{S} \models_{\emptyset} F$ for the empty variable assignment \emptyset; the answer to F is false if $\mathcal{S} \not \models_{\emptyset} F$ for the empty variable assignment \emptyset.

Example 8.6

Consider the MONDIAL schema.

- Which cities (CName, Country) have at least 1.000.000 inhabitants?

$$
F(C N, C)=\exists \operatorname{Pr}, \operatorname{Pop}, L 1, L 2(\operatorname{city}(C N, C, \operatorname{Pr}, \operatorname{Pop}, L 1, L 2) \wedge P o p \geq 1000000)
$$

- Which countries (CName) belong to Europe?

$$
\begin{aligned}
F(\text { CName })= & \exists \text { CCode, Cap, Capprov, Pop, A, ContName, ContArea } \\
& (\text { country }(\text { CName }, \text { CCode, Cap, Capprov, Pop, A }) \wedge \\
& \text { continent }(\text { Cont Name }, \text { ContArea }) \wedge \\
& \text { ContName }=\text { 'Europe' } \wedge \text { encompasses }(\text { ContName }, \text { CCode }))
\end{aligned}
$$

Example 8.6 (Continued)

- Again, relational division ...

Which organizations have at least one member on each continent

$$
\begin{aligned}
& F(\text { Abbrev })= \exists O, \text { Headq } N, \text { HeadqC, HeadqP, Est }: \\
&(\text { organization }(O, \text { Abbrev, HeadqN, HeadqC,HeadqP, Est }) \wedge \\
& \forall \text { Cont }:((\exists \text { ContArea }: \text { continent }(\text { Cont }, \text { ContArea })) \rightarrow \\
& \exists \text { Country, Perc, Type }:(\text { encompasses }(\text { Country }, \text { Cont, Perc }) \wedge \\
&\text { isMember }(\text { Country, Abbrev, Type }))))
\end{aligned}
$$

- Negation

All pairs (country,organization) such that the country is a member in the organization, and all its neighbors are not.
$F($ CCode, Org $)=\exists$ CName, Cap, Capprov, Pop, Area, Type : (country(CName, CCode, Cap, Capprov, Pop, Area) \wedge isMember (CCode, Org, Type) \wedge
$\forall C C o d e^{\prime}:(\exists$ Length : sym_borders(CCode, CCode', Length) \rightarrow $\neg \exists$ Type $^{\prime}:$ isMember $\left(\right.$ CCode $^{\prime}$, Org, Type $\left.\left.{ }^{\prime}\right)\right)$)

8.3 Comparison of the Algebra and the Calculus

Calculus: The semantics (= answer) of a query in the relational calculus is defined via the truth value of a formula wrt. an interpretation "declarative Semantics".

Algebra: The semantics is given by evaluating an algebraic expression (i.e., an operator tree) "algebraic Semantics".

Example: Expressing Algebra Operations in the Calculus

Consider relation schemata $R[A, B], S[B, C]$, and $T[A]$.

- Projection $\pi[A] R$:

$$
F(X)=\exists Y R(X, Y)
$$

- Selection $\sigma[A=B] R$:

$$
F(X, Y)=R(X, Y) \wedge X=Y
$$

- Join $R \bowtie S$:

$$
F(X, Y, Z)=R(X, Y) \wedge S(Y, Z)
$$

- Union $R \cup(T \times\{b\})$:

$$
F(X, Y)=R(X, Y) \vee(T(X) \wedge Y=b)
$$

- Difference $R-(T \times\{b\})$:

$$
F(X, Y)=R(X, Y) \wedge \neg(T(X) \wedge Y=b)
$$

- Division $R \div T$:

$$
F(Y)=\forall X:(T(X) \Rightarrow R(X, Y)) \quad \text { or } \quad F(X)=\neg \exists X:(T(X) \wedge \neg R(X, Y))
$$

Safety and Domain-Independence

- If the domain \mathcal{D} is infinite, the answer relations to some expressions of the calculus can be infinite!

Example 8.7

Let

$$
F(X)=\neg R(X)
$$

("give me all a such that $R(a)$ does not hold")
where $\mathcal{S}(R)=\{1\}$.
Depending on $\mathcal{D}, \mathcal{S}(F)$ is infinite.

Example 8.8

Let

$$
F(X, Z)=\exists Y(R(X, Y) \vee S(Y, Z))
$$

Consider $\mathcal{S}(R)=\{(1,1)\}$, arbitrary $\mathcal{S}(S)$ (even empty).

Which Z?

Example 8.9

Consider a database of persons:
$\operatorname{married}(X, Y): X$ is married with Y.
$F(X)=\neg \operatorname{married}($ john,$X) \wedge \ell X=$ john $).$
What is the answer?

- Consider $\mathcal{D}=\{$ john, mary $\}, \mathcal{S}($ married $)=\{($ john, mary $),($ mary, john $)\}$.
$\mathcal{S}(F)=\emptyset$.
- there is no person (except John) who is not married with John
- all persons are married with John???
- Consider $\mathcal{D}=\{$ john, mary, sue $\}, \mathcal{S}($ married $)=\{($ john, mary $),($ mary,$j o h n)\}$.
$\mathcal{S}(F)=\{s u e\}$.
The answer depends not only on the database, but on the domain (that is a purely logical notion)
Obviously, it is meant "All persons in the database who are not married with john".

Active Domain

Requirement: the answer to a query depends only on

- constants given in the query
- constants in the database

Definition 8.1

Given a formula F of the relational calculus and a database state $\mathcal{S}, D O M(F)$ contains

- all constants in F,
- and all constants in $\mathcal{S}(R)$ where R is a relation name that occurs in F.
$D O M(F)$ is called the active domain domain of F.
$D O M(F)$ is finite.

Domain-Independence
Formulas in the relational calculus are required to be domain-independent:

Definition 8.2

A formula $F\left(X_{1}, \ldots, X_{n}\right)$ is domain-independent if for all $D \supseteq \operatorname{DOM}(F)$,

$$
\begin{aligned}
\mathcal{S}(F) & =\left\{\left(\beta\left(X_{1}\right), \ldots, \beta\left(X_{n}\right)\right) \mid \mathcal{S} \models_{\beta} F, \beta\left(X_{i}\right) \in D O M(F) \text { for all } 1 \leq i \leq n\right\} \\
& =\left\{\left(\beta\left(X_{1}\right), \ldots, \beta\left(X_{n}\right)\right) \mid \mathcal{S} \models_{\beta} F, \beta\left(X_{i}\right) \in D \text { for all } 1 \leq i \leq n\right\} .
\end{aligned}
$$

It is undecidable whether a formula F is domain-independent!
(follows from Rice's Theorem).
Instead, (syntactical) safety is required for queries:

- stronger condition
- can be tested algorithmically

Safety

Definition 8.3

A formula F is (syntactically) safe if and only if it satisfies the following conditions:

1. F does not contain \forall quantifiers. (for formal simplicity since $\forall X G$ can always be replaced by $\neg \exists X \neg G$)
2. if $F_{1} \vee F_{2}$ is a subformula of F, then F_{1} and F_{2} must have the same free variables.
3. for all maximal conjunctive subformulas $F_{1} \wedge \ldots \wedge F_{m}, m \geq 1$ of F :

All free variables must be bounded:

- Let $1 \leq j \leq m$.
- if F_{j} is neither a comparison, nor a negated formula, any free variable in F_{j} is bounded,
- if F_{j} is of the form $X=a$ or $a=X$ with a a constant, then X is bounded,
- if F_{j} is of the form $X=Y$ or $Y=X$ and Y is bounded, then X is also bounded.
(a subformula G of a formula F is a maximal conjunctive subformula, if there is no conjunctive subformula H of F such that G is a subformula of H).

Example 8.10

- $X=Y \vee R(X, Z)$ is not safe
- $X=Y \wedge R(X, Y)$ is safe
- $R(X, Y, Z) \wedge \neg(S(X, Y) \vee T(Y, Z))$ is not safe, but the logically equivalent formula

$$
R(X, Y, Z) \wedge \neg S(X, Y) \wedge \neg T(Y, Z)
$$

is safe.

- safety is defined purely syntactically
- safety can be tested effectively
- safety implies domain-independence (proof by induction on the number of maximal conjunctive subformulas).

8.4 Equivalence of Algebra and (safe) Calculus

As for the algebra, the attributes of each relation are assumed to be ordered.

Theorem 8.1

For each expression Q of the relational algebra there is an equivalent safe formula F of the relational calculus, and vice versa; i.e., for every state \mathcal{S}, Q and F define the same answer relation.

Proof:

(A) Algebra to Calculus

Let Q an expression of the relational algebra. The proof is done by induction over the structure of Q (as an operator tree). The formulas that are generated are always safe.
Induction base: Q does not contain operators.

- if $Q=R$ where R is a relation symbol of arity $n \geq 1$:

$$
F\left(Z_{1}, \ldots, Z_{n}\right)=R\left(Z_{1}, \ldots, Z_{n}\right)
$$

\mathbf{R}	
A_{1}	A_{2}
a	b
1	2

$Q: R \quad$ answer to $R\left(Z_{1}, Z_{2}\right):$| Z_{1} | Z_{2} |
| :---: | :---: |
| a | b |
| 1 | 2 |

- otherwise, $Q=\{c\}, c \in \mathcal{D}$. Then, $F(Z)=(Z=c)$.

\{c $\}$
$?$
c

Answer to $Z=c: \quad \frac{Z}{\mathrm{c}}$

Induction step:

Assume that Q_{1} is equivalent to $F_{1}\left(X_{1}, \ldots, X_{m}\right)$ and Q_{2} is equivalent to $F_{2}\left(Y_{1}, \ldots, Y_{n}\right)$.

- Case $Q=Q_{1} \cup Q_{2}$ where $\Sigma_{Q_{1}}=\Sigma_{Q_{2}}$ and $\left|\Sigma_{Q_{1}}\right|=n \geq 1$.

$$
\begin{aligned}
F\left(Z_{1}, \ldots, Z_{n}\right)= & \exists X_{1}, \ldots, \exists X_{n} \quad\left(F_{1}\left(X_{1}, \ldots, X_{n}\right) \wedge Z_{1}=X_{1} \wedge \ldots \wedge Z_{n}=X_{n}\right) \vee \\
& \exists Y_{1}, \ldots, \exists Y_{n} \quad\left(F_{2}\left(Y_{1}, \ldots, Y_{n}\right) \wedge Z_{1}=Y_{1} \wedge \ldots \wedge Z_{n}=Y_{n}\right)
\end{aligned}
$$

Example:

Q_{1}	
A_{1}	A_{2}
a	b
c	d

$$
F_{1}\left(\begin{array}{ll}
X_{1} & X_{2} \\
\hline \mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array} \quad F\left(\begin{array}{ll}
Z_{1} & Z_{2} \\
\hline \mathrm{a} & \mathrm{~b}
\end{array}\right)\right.
$$

Q_{2}	
A_{1}	A_{2}
1	2
c	d

$$
\mathrm{c} \quad \mathrm{~d}
$$

$$
F_{2}\left(\begin{array}{cc}
Y_{1} & Y_{2} \\
\hline 1 & 2 \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)
$$

$$
12
$$

- Case $Q=Q_{1}-Q_{2}$. The same, replace $\ldots \vee \ldots$ by $\ldots \wedge \neg(\ldots)$.
- Case $Q=\pi[Y] Q_{1}$ and $Y=\left\{A_{i_{1}}, \ldots, A_{i_{k}}\right\} \subseteq \Sigma_{Q_{1}}, k \geq 1$.

$$
F\left(Z_{1}, \ldots, Z_{k}\right)=\exists X_{1}, \ldots, \exists X_{n}\left(F_{1}\left(X_{1}, \ldots, X_{n}\right) \wedge Z_{1}=X_{i_{1}} \wedge \ldots \wedge Z_{k}=X_{i_{k}}\right)
$$

Example:

Q_{1}	
A_{1}	A_{2}
a	b
c	d

$$
F_{1}\left(\begin{array}{cc}
X_{1} & X_{2} \\
\hline \mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Let } Y=\left\{A_{2}\right\}: \quad \begin{array}{c}
F\left(Z_{1}\right)=\exists X_{1}, \exists X_{2}\left(F_{1}\left(X_{1}, X_{2}\right) \wedge Z_{1}=X_{2}\right) \\
\\
F\left(\frac{Z_{1}}{\mathrm{~b}}\right) \\
\mathrm{d}
\end{array}
\end{aligned}
$$

- Case $Q=\sigma[\alpha] Q_{1}, A_{i}, A_{j} \in \Sigma_{Q_{1}}$ and $n \geq 1$.

$$
F\left(X_{1}, \ldots, X_{n}\right)=F_{1}\left(X_{1}, \ldots, X_{n}\right) \wedge \alpha^{\prime}, \text { where } \alpha^{\prime}=\left\{\begin{array}{lll}
X_{i} \theta a_{i} & \text { for } \quad \alpha=\left(A_{i} \theta a_{i}\right) \\
a_{i} \theta X_{i} & \text { for } \alpha=\left(a_{i} \theta A_{i}\right) \\
X_{i} \theta X_{j} & \text { for } & \alpha=\left(A_{i} \theta A_{j}\right)
\end{array}\right.
$$

Example:

Q_{1}	
A_{1}	A_{2}
1	2
3	4

$$
F_{1}\left(\begin{array}{cc}
X_{1} & X_{2} \\
\hline 1 & 2 \\
3 & 4
\end{array}\right.
$$

$$
\text { Let } \sigma=" A_{1}=3 ": \quad F\left(Z_{1}, Z_{2}\right)=F_{1}\left(X_{1}, X_{2}\right) \wedge Z_{1}=3
$$

$$
F\left(\frac{Z_{1} Z_{2}}{3}\right)
$$

- Case $Q=Q_{1} \bowtie Q_{2}$ and $\Sigma_{Q_{1}}=\left\{A_{1}, \ldots, A_{m}\right\}, \Sigma_{Q_{2}}=\left\{B_{1}, \ldots, B_{n}\right\}, n, m \geq 1$. Let w.l.o.g. $A_{1}=B_{1}, \ldots, A_{k}=B_{k}$ for some $k \leq n, m$.

$$
\begin{aligned}
F\left(X_{1}, \ldots, X_{m}, Y_{k+1}, \ldots, Y_{n}\right)= & \left(F_{1}\left(X_{1}, \ldots, X_{m}\right) \wedge F_{2}\left(Y_{1}, \ldots, Y_{n}\right) \wedge\right. \\
& \left.\wedge X_{1}=Y_{1} \wedge \ldots \wedge X_{k}=Y_{k}\right)
\end{aligned}
$$

Example:

Q_{1}	
$A B_{1}$	A_{2}
1	2
3	4
$A B_{1}$	B_{2}
5	6
1	7

$$
\begin{array}{cc}
F_{1}\left(\begin{array}{cc}
X_{1} & X_{2} \\
\hline 1 & 2 \\
3 & 4
\end{array}\right. & F_{2}\left(\begin{array}{cc}
Y_{1} & Y_{2} \\
\hline 5 & 6 \\
1 & 7
\end{array}\right)
\end{array}
$$

$$
F\left(Z_{1}, Z_{2}, Z_{3}\right)=F_{1}\left(X_{1}, X_{2}\right) \wedge F_{2}\left(Y_{1}, Y_{2}\right) \wedge X_{1}=Y_{1}
$$

$$
F\left(\begin{array}{ccc}
Z_{1} & Z_{2} & Z_{3} \\
\hline 1 & 2 & 7
\end{array}\right)
$$

Note again that the resulting formulas F are safe.

(B) Calculus to Algebra

Consider a safe formula $F\left(X_{1}, \ldots, X_{n}\right), n \geq 1$ of the relational calculus.
First, an algebra expression E that computes the active domain $D O M(F)$ of the formula and the database is derived:

Assume $R_{1}, \ldots, R_{n}, n \geq 0$ to be the relation names in F. For k-ary R_{i},

$$
E\left(R_{i}\right)=\pi[\$ 1]\left(R_{i}\right) \cup \ldots \cup \pi[\$ k]\left(R_{i}\right)
$$

Let

$$
E=E\left(R_{1}\right) \cup \ldots E\left(R_{n}\right) \cup\left\{a_{1}, \ldots, a_{m}\right\}
$$

where $a_{j}, 1 \leq j \leq m$ are the constants in F.

- $E(\mathcal{S})$ is a unary relation.

An equivalent algebra expression Q is now constructed by induction over the number of maximal conjunctive subformulas of F.

Induction base: F has exactly one maximal conjunctive subformula. Thus,
$F=G_{1} \wedge \ldots \wedge G_{l}, l \geq 1$.
(1) Case $l=1$.

Then, either $F=R\left(a_{1}, \ldots, a_{k}\right)$, where a_{i} are variablen or constants, or F is a comparison of one of the forms $F=(X=a)$ or $F=(a=X)$, where X is a variable and a is a constante (note that all other comparisons would not be safe).

- Case $F=R\left(a_{1}, \ldots, a_{k}\right)$, e.g. $F=R(a, X, b, Y, a, X)$. Then, let

$$
Q=\pi[\$ 2, \$ 4]\left(\sigma\left[\Theta_{1} \wedge \Theta_{2}\right](R)\right),
$$

where

$$
\Theta_{1}=(\$ 1=a \wedge \$ 3=b \wedge \$ 5=a)
$$

and

$$
\Theta_{2}=(\$ 2=\$ 6)
$$

- Case $F=(X=a)$ or $F=(a=X)$. Let

$$
Q=\{a\} .
$$

(2) Case $l>1$ (cf. example below) Then, w.l.o.g.

$$
F=G_{1} \wedge \ldots \wedge G_{u} \wedge G_{u+1} \wedge \ldots \wedge G_{v}
$$

s.t. $u+v>1$, where all $G_{i}, 1 \leq i \leq u$ as in (1) and all $G_{j}, u<j \leq v$ are other comparisons.
For every $G_{i}, 1 \leq i \leq u$ take an algebra expression $Q\left(G_{i}\right)$ as done in (1), where the format $\Sigma_{Q\left(G_{i}\right)}$ is just the set of free variables in G_{i}. Let

$$
Q^{\prime}=\bowtie_{i=1}^{u} Q\left(G_{i}\right)
$$

With Θ the conjunction of the selection conditions G_{u+1}, \ldots, G_{v},

$$
Q=\sigma[\Theta] Q^{\prime}
$$

Example 8.11

Consider $F=R(a, X, b, Y, a, X) \wedge S(X, Z, a) \wedge X=Y$
as $F=G_{1} \wedge G_{2} \wedge G_{3}$:

$$
\begin{align*}
& Q\left(G_{1}\right)=\pi[\$ 2, \$ 4](\sigma[\$ 1=a \wedge \$ 3=b \wedge \$ 5=a \wedge \$ 1=\$ 6](R)) \\
& Q\left(G_{2}\right)=\pi[\$ 1, \$ 2](\sigma[\$ 3=a](S)) \\
& Q(F)=\sigma[X=Y]\left(\left([\$ 1 \rightarrow X, \$ 2 \rightarrow Y] Q\left(G_{1}\right)\right) \bowtie\left([\$ 1 \rightarrow X, \$ 2 \rightarrow Z] Q\left(G_{2}\right)\right)\right)
\end{align*}
$$

Induction Step: For formulas F, G, H, \ldots with maximal $n-1$ maximal conjunctive subformulas, the equivalent algebra expressions are $Q(F), Q(G), Q(H), \ldots$.
(3) $F=\exists X G$.

$$
Q=\pi[\$ 1, \ldots, \$ k](Q(G))
$$

where G has $k+1, k \geq 0$ free variables, and w.l.o.g. X is the $k+1$ th free variable.
(4) $F=G \vee H$.

$$
Q=Q(G) \cup Q(H)
$$

(safety guarantees that G and H have the same free variables, thus, $Q(G)$ and $Q(H)$ have the same format).
(5) $F=G_{1} \wedge \ldots \wedge G_{l}, l \geq 1$ where some G_{i} are of the form $\neg H_{i}$. Then,

$$
Q\left(G_{i}\right)=E^{k}-Q\left(H_{i}\right)
$$

where $Q\left(H_{i}\right)$ is k-ary.
Q is then constructed analogous to (2).

