
Chapter 8
Relational Database Languages:
Relational Calculus
Overview

• Described up to now: relational algebra, SQL

• the relational calculus is a specialization of the first-order calculus, tailored to relational
databases.

• straightforward: the only structuring means of relational databases are relations – each
relation can be seen as an interpretation of a predicate.

• there exists a declarative semantics.

381

8.1 First-Order Logic and the Relational Calculus

The relational calculus is a specialization of first-order logic.
(This section can be skipped or compressed depending on the knowledge of the participants)

8.1.1 Syntax

• first-order language contains a set of distinguished symbols:

– “(” and “)”, logical symbols ¬, ∧, ∨,→, quantifiers ∀, ∃,
– an infinite set of variables X,Y , X1, X2,

• An individual first-order language is then given by its signature Σ. Σ contains function
symbols and predicate symbols , each of them with a given arity.

For databases:

• the relation names are the predicate symbols (with arity),
e.g. continent/2, encompasses/3, etc.

• there are only 0-ary function symbols, i.e., constants .

• thus, the database schema R is the signature.

382

Syntax (Cont’d).

Terms

The set of terms over Σ is defined inductively as

• each variable is a term,

• for every function symbol f ∈ Σ with arity n and terms t1, . . . , tn, also f(t1, . . . , tn) is a
term.

0-ary function symbols: c, 1,2,3,4, “Berlin”,. . .

Example: for plus/2, the following are terms: plus(3, 4), plus(plus(1, 2), 4), plus(X, 2).

• ground terms are terms without variables.

For databases:

• since there are no function symbols,

• the only terms are the constants and variables
e.g., 1, 2, “D”, “Germany”, X, Y, etc.

383

Syntax (Cont’d): Formulas

Formulas are built inductively (using the above-mentioned special symbols) as follows:

Atomic Formulas

(1) For a predicate symbol (i.e., a relation name) R of arity k, and terms t1, . . . , tk,
R(t1, . . . , tk) is a formula.

(2) (for databases only, as special predicates)
A selection condition is an expression of the form t1 θ t2 where t1, t2 are terms, and θ is
a comparison operator in {=,6=,≤,<,≥,>}.
Every selection condition is a formula.

(both are also called positive literals)

For databases:

• the atomic formulas are the predicates built over relation names and these constants,
e.g.,
continent(“Asia”,4.5E7), encompasses(“R”,“Asia”,X), country(N,CC,Cap,Prov,Pop,A).

• comparison predicates (i.e., the “selection conditions”) are atomic formulas, e.g.,
X = “Asia”, Y > 10.000.000 etc.

384

Syntax (Cont’d).

Compound Formulas

(3) For a formula F , also ¬F is a formula. If F is an atom, ¬F is called a negative literal .

(4) For a variable X and a formula F , ∀X : F and ∃F : X are formulas. F is called the scope
of ∃ or ∀, respectively.

(5) For formulas F and G , the conjunction F ∧G and the disjunction F ∨G are formulas.

For formulas F and G, where G (regarded as a string) is contained in F , G is a subformula
of F .

The usual priority rules apply (allowing to omit some parentheses).

• instead of F ∨ ¬G, the implication syntax F ← G or G→ F can be used, and

• (F → G) ∧ (F ← G) is denoted by the equivalence F ↔ G.

385

Syntax (Cont’d).

Bound and Free Variables

An occurrence of a variable X in a formula is

• bound (by a quantifier) if the occurrence is in a formula A inside ∃X : A or ∀X : A (i.e., in
the scope of an appropriate quantifier).

• free otherwise, i.e.,if it is not bound by any quantifier.

Formulas without free variables are called closed .

Example:

• continent(“Asia”, X): X is free.

• continent(“Asia”, X) ∧X > 10.000.000: X is free.

• ∃X : (continent(“Asia”, X) ∧X > 10.000.000): X is bound.
The formula is closed.

• ∃X : (continent(X,Y)): X is bound, Y is free.

• ∀Y : (∃X : (continent(X,Y))): X and Y are bound.
The formula is closed.

386

Outlook:

• closed formulas either hold in a database state, or they do not hold.

• free variables represent answers to queries:
?- continent(“Asia”, X) means “for which value x does continent(“Asia”, x) hold?”
Answer: for x = 4.5E7.

• ∃Y : (continent(X,Y)): means
“for which values x is there an y such that continent(x, y) holds? – we are not interested
in the value of y”
The answer are all names of continents, i.e., that x can be “Asia”, “Europe”, or . . .

... so we have to evaluate formulas (“semantics”).

387

8.1.2 Semantics

The semantics of first-order logic is given by first-order structures over the signature:

First-Order Structure

A first-order structure S = (I,D) over a signature Σ consists of a nonempty set D (domain)
and an interpretation I of the signature symbols over D which maps

• every constant c to an element I(c) ∈ D,

• every n-ary function symbol f to an n-ary function I(f) : Dn → D,

• every n-ary predicate symbol p to an n-ary relation I(p) ⊆ Dn.

For Databases:

• no function symbols with arity > 0

388

First-Order Structures: An Example

Example 8.1 (First-Order Structure)
Signature: constant symbols: zero, one, two, three, four, five

predicate symbols: green/1, red/1, sees/2

function symbols: to_right/1, plus/2

Structure S:

1

23

4

5 6

Domain D = {0, 1, 2, 3, 4, 5}
Interpretation of the signature:
I(zero) = 0, I(one) = 1, . . . , I(five) = 5

I(green) = {(2), (5)}, I(red) = {(0), (1), (3), (4)}
I(sees) = {(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)}
I(to_right) = { (0) 7→ (1), (1) 7→ (2), (2) 7→ (3),

(3) 7→ (4), (4) 7→ (5), (5) 7→ (0)}
I(plus) = {(n,m) 7→ (n+m) mod 6 | n,m ∈ D}

Terms: one, to_right(four), to_right(to_right(X)), to_right(to_right(to_right(four))),
plus(X, to_right(zero)), to_right(plus(to_right(four), five))

Atomic Formulas: green(1), red(to_right(to_right(to_right(four)))), sees(X,Y),

sees(X, to_right(Z)), sees(to_right(to_right(four)), to_right(one)),
plus(to_right(to_right(four)), to_right(one)) = to_right(three) 2

389

SUMMARY: NOTIONS FOR DATABASES

• a set R of relational schemata; logically spoken, R is the signature ,

• a database state is a structure S over R

• D contains all domains of attributes of the relation schemata,

• for every single relation schema R = (X̄) where X̄ = {A1, . . . , Ak}, we write
R[A1, . . . , Ak]. k is the arity of the relation name R.

• relation names are the predicate symbols. They are interpreted by relations, e.g.,
I(encompasses)

(which we also write as S(encompasses)).

For Databases:

• no function symbols with arity > 0

• constants are interpreted “by themselves”:
I(4) = 4, I(“Asia”) = “Asia”

• care for domains of attributes.

390

Evaluation of Terms and Formulas

Terms and formulas must be evaluated under a given interpretation – i.e., wrt. a given
database state S.

• Terms can contain variables.

• variables are not interpreted by S.

A variable assignment over a universe D is a mapping

β : V ariables→ D .

For a variable assignment β, a variable X, and d ∈ D, the modified variable assignment βd
X

is identical with β except that it assigns d to the variable X:

βd
X =

Y 7→ β(Y) for Y 6= X ,

X 7→ d otherwise.

Example 8.2
For variables X,Y, Z, β = {X 7→ 1, Y 7→ “Asia”, Z 7→ 3.14} is a variable assignment.

β3
X = {X 7→ 3, Y 7→ “Asia”, Z 7→ 3.14}. 2

391

Evaluation of Terms

Terms and formulas are interpreted

• under a given interpretation S, and

• wrt. a given variable assignment β.

For Databases:

• S is a database state.

• Σ is a purely relational signature,

• no function symbols with arity > 0, no nontrivial terms,

• constants are interpreted “by themselves”.

Every interpretation S together with a variable assignment β induces an evaluation S of terms
(S(t, β) ∈ D) and tuples of terms:

For Databases: S(x, β) := β(x) for a variable x ,

S(c, β) := c for a constant c .

392

Evaluation of Terms

Relevant only for full first-order logic:

S(x, β) := β(x) for a variable x ,

S(f(t1, . . . , tn), β) := (I(f))(S(t1, β), . . . ,S(tn, β))
for a function symbol f ∈ Σ with arity n and terms t1, . . . , tn.

Example 8.3 (Evaluation of Terms)
Consider again Example 8.1.

• For variable-free terms: β = ∅.

• S(one, ∅) = I(one) = 1

• S(to_right(four), ∅) = I(to_right(S(four, ∅)) = I(to_right(4)) = 5

• S(to_right(to_right(to_right(four))), ∅) = I(to_right(S(to_right(to_right(four)), ∅))) =
I(to_right(I(to_right(S(to_right(four), ∅))))) = I(to_right(I(to_right(5)))) =
I(to_right(6)) = 1 2

393

Example 8.3 (Continued)
• Let β = {X 7→ 3}.
S(to_right(to_right(X)), β) = I(to_right(S(to_right(X), β))) =

I(to_right(I(to_right(S(X, β))))) = I(to_right(I(to_right(β(X))))) =

I(to_right(I(to_right(3)))) = I(to_right(4)) = 5

• Let β = {X 7→ 3}.
S(plus(X, to_right(zero)), ∅) = I(plus(S(X, β),S(to_right(zero), β))) =
I(plus(β(X), I(to_right(S(zero, β))))) = I(plus(3, I(to_right(I(zero))))) =
I(plus(3, I(to_right(0)))) = I(plus(3, 1)) = 4 2

394

EVALUATION OF FORMULAS

Formulas can either hold, or not hold in a database state.

Truth Value

Let F a formula, S an interpretation, and β a variable assignment of the free variables in F

(denoted by free(F)).

Then we write S |=β F if “F is true in S wrt. β”.

Formally, |= is defined inductively.

395

TRUTH VALUES OF FORMULAS : INDUCTIVE DEFINITION

Motivation: variable-free atoms

For an atom R(a1, . . . , ak), where ai, 1 ≤ i ≤ k are constants,

R(a1, . . . , ak) is true in S if and only if (I(a1), . . . , I(ak)) ∈ S(R).

Otherwise, R(a1, . . . , ak) is false in S.

Base Case: Atomic Formulas

The truth value of an atom R(t1, . . . , tk), where ti, 1 ≤ i ≤ k are terms, is given as

S |=β R(t1, . . . , tk) if and only if (S(t1), . . . ,S(tk)) ∈ S(R) .

For Databases:

• the ti can only be constants or variables.

396

TRUTH VALUES OF FORMULAS : INDUCTIVE DEFINITION

(2) t1 θ t2 with θ a comparison operator in {=,6=,≤,<,≥,>}:
S |=β t1 θ t2 if and only if S(t1, β) θ S(t2, β) holds.

(3) S |=β ¬G if and only if S 6|=β G.

(4) S |=β G ∧H if and only if S |=β G and S |=β H.

(5) S |=β G ∨H if and only if S |=β G or S |=β H.

(6) S |=β ∀XG if and only if for all d ∈ D, S |=βd
X
G.

(7) S |=β ∃XG if and only if for some d ∈ D, S |=βd
X
G.

397

Example 8.4 (Evaluation of Atomic Formulas)
Consider again Example 8.1.

• For variable-free formulas, let β = ∅
• S |=∅ green(1) ⇔ (1) ∈ I(green) – which is not the case. Thus, S 6|=∅ green(1).

• S |=∅ red(to_right(to_right(to_right(four)))) ⇔
(S(to_right(to_right(to_right(four))), ∅)) ∈ I(red) ⇔ (6) ∈ I(red)

which is the case. Thus, S |=∅ red(to_right(to_right(to_right(four)))).

• Let β = {X 7→ 3, Y 7→ 5}.
S |=β sees(X,Y) ⇔ (S(X, β),S(Y, β)) ∈ I(sees) ⇔ (3, 5) ∈ I(sees)

which is not the case.

• Again, β = {X 7→ 3, Y 7→ 5}.
S |=β sees(X, to_right(Y)) ⇔ (S(X, β),S(to_right(Y), β)) ∈ I(sees) ⇔ (3, 6) ∈ I(sees)

which is the case.

•
S |=β plus(to_right(to_right(four)), to_right(one)) = to_right(three) ⇔
S(plus(to_right(to_right(four)), to_right(one)), ∅) = S(to_right(three), ∅) ⇔ 2 = 4

which is not the case. 2

398

Example 8.5 (Evaluation of Compound Formulas)
Consider again Example 8.1.

• S |=∅ ∃X : red(X) ⇔
there is a d ∈ D such that S |=∅d

X
red(X) ⇔ there is a d ∈ D s.t. S |={X 7→d} red(X)

Since we have shown above that S |=∅ red(6), this is the case.

• S |=∅ ∀X : green(X) ⇔
for all d ∈ D, S |=∅d

X
green(X) ⇔ for all d ∈ D, S |={X 7→d} green(X)

Since we have shown above that S 6|=∅ green(1) this is not the case.

• S |=∅ ∀X : (green(X) ∨ red(X)) ⇔ for all d ∈ D, S |={X 7→d} (green(X) ∨ red(X)).
One has now to check whether S |={X 7→d} (green(X) ∨ red(X)) for all d ∈ domain.
We do it for d = 3:
S |={X 7→3} (green(X) ∨ red(X)) ⇔
S |={X 7→3} green(X) or S |={X 7→3} red(X) ⇔
(S(X, {X 7→ 3})) ∈ I(green) or (S(X, {X 7→ 3})) ∈ I(red) ⇔
(3) ∈ I(green) or (3) ∈ I(red)

which is the case since (3) ∈ I(red).

• Similarly, S 6|=∅ ∀X : (green(X) ∧ red(X)) 2

399

8.2 Formulas as Queries

Formulas can be seen as queries :

• For a formula F with free variables X1, . . . , Xn, n ≥ 1, we write F (X1, . . . , Xn).

• each formula F (X1, . . . , Xn) defines – dependent on a given interpretation S – an
answer relation S(F (X1, . . . , Xn)).

The answer set to F (X1, . . . , Xn) wrt. S is the set of tuples (a1, . . . , an), ai ∈ D,
1 ≤ i ≤ n, such that F is true in S when assigning each of the variables Xi to the
constant ai, 1 ≤ i ≤ n.

Formally:

S(F) = {(β(X1), . . . , β(Xn)) | S |=β F where β is a variable assignment of free(F)}.

• for n = 0, the answer to F is true if S |=∅ F for the empty variable assignment ∅;
the answer to F is false if S 6|=∅ F for the empty variable assignment ∅.

400

Example 8.6
Consider the MONDIAL schema.

• Which cities (CName, Country) have at least 1.000.000 inhabitants?

F (CN,C) = ∃ Pr, Pop, L1, L2 (city(CN,C, Pr, Pop, L1, L2)∧ Pop ≥ 1000000)

• Which countries (CName) belong to Europe?

F (CName) = ∃ CCode, Cap, Capprov, Pop,A,ContName,ContArea

(country(CName,CCode, Cap, Capprov, Pop,A) ∧
continent(ContName,ContArea) ∧
ContName = ’Europe’ ∧ encompasses(ContName,CCode))

2

401

Example 8.6 (Continued)
• Again, relational division ...

Which organizations have at least one member on each continent

F (Abbrev) = ∃O,HeadqN,HeadqC,HeadqP,Est :

(organization(O,Abbrev,HeadqN,HeadqC,HeadqP,Est)∧
∀Cont : ((∃ContArea : continent(Cont, ContArea))→

∃Country, Perc, Type : (encompasses(Country, Cont, Perc) ∧
isMember(Country, Abbrev, Type))))

• Negation
All pairs (country,organization) such that the country is a member in the organization, and
all its neighbors are not.

F (CCode,Org) = ∃CName,Cap, Capprov, Pop,Area, Type :

(country(CName,CCode, Cap, Capprov, Pop,Area)∧
isMember(CCode,Org, Type) ∧
∀CCode′ : (∃Length : sym_borders(CCode, CCode′, Length)→

¬∃Type′ : isMember(CCode′, Org, Type′)))

2

402

8.3 Comparison of the Algebra and the Calculus

Calculus: The semantics (= answer) of a query in the relational calculus is defined via the
truth value of a formula wrt. an interpretation

“declarative Semantics”.

Algebra: The semantics is given by evaluating an algebraic expression (i.e., an operator tree)

“algebraic Semantics”.

403

EXAMPLE : EXPRESSING ALGEBRA OPERATIONS IN THE CALCULUS

Consider relation schemata R[A,B], S[B,C], and T [A].

• Projection π[A]R:
F (X) = ∃Y R(X,Y)

• Selection σ[A = B]R:
F (X,Y) = R(X,Y) ∧X = Y

• Join R ⊲⊳ S:
F (X,Y, Z) = R(X,Y) ∧ S(Y, Z)

• Union R ∪ (T × {b}):
F (X,Y) = R(X,Y) ∨ (T (X) ∧ Y = b)

• Difference R− (T × {b}):

F (X,Y) = R(X,Y) ∧ ¬(T (X) ∧ Y = b)

• Division R÷ T :

F (Y) = ∀X : (T (X)⇒ R(X,Y)) or F (X) = ¬∃X : (T (X) ∧ ¬R(X,Y))

404

SAFETY AND DOMAIN-INDEPENDENCE

• If the domain D is infinite, the answer relations to some expressions of the calculus can
be infinite!

Example 8.7
Let

F (X) = ¬R(X),

(“give me all a such that R(a) does not hold”)
where S(R) = {1}.
Depending on D, S(F) is infinite. 2

Example 8.8
Let

F (X,Z) = ∃Y (R(X,Y) ∨ S(Y, Z)),

Consider S(R) = {(1, 1)}, arbitrary S(S) (even empty).

Which Z? 2

405

Example 8.9
Consider a database of persons:

married(X,Y): X is married with Y.

F (X) = ¬married(john,X)∧ 6 (X = john).

What is the answer?

• Consider D = {john,mary}, S(married) = {(john,mary), (mary, john)}.
S(F) = ∅.
– there is no person (except John) who is not married with John

– all persons are married with John??? 2

• Consider D = {john,mary, sue}, S(married) = {(john,mary), (mary, john)}.
S(F) = {sue}.
The answer depends not only on the database, but on the domain (that is a purely logical
notion)

Obviously, it is meant “All persons in the database who are not married with john”.

406

Active Domain

Requirement: the answer to a query depends only on

• constants given in the query

• constants in the database

Definition 8.1
Given a formula F of the relational calculus and a database state S, DOM(F) contains

• all constants in F ,

• and all constants in S(R) where R is a relation name that occurs in F .

DOM(F) is called the active domain domain of F . 2

DOM(F) is finite.

407

Domain-Independence

Formulas in the relational calculus are required to be domain-independent :

Definition 8.2
A formula F (X1, . . . , Xn) is domain-independent if for all D ⊇ DOM(F),

S(F) = {(β(X1), . . . , β(Xn)) | S |=β F, β(Xi) ∈ DOM(F) for all 1 ≤ i ≤ n}
= {(β(X1), . . . , β(Xn)) | S |=β F, β(Xi) ∈ D for all 1 ≤ i ≤ n}.

2

It is undecidable whether a formula F is domain-independent!
(follows from Rice’s Theorem).

Instead, (syntactical) safety is required for queries:

• stronger condition

• can be tested algorithmically

408

Safety

Definition 8.3
A formula F is (syntactically) safe if and only if it satisfies the following conditions:

1. F does not contain ∀ quantifiers. (for formal simplicity since ∀XG can always be replaced
by ¬∃X¬G)

2. if F1 ∨ F2 is a subformula of F , then F1 and F2 must have the same free variables.

3. for all maximal conjunctive subformulas F1 ∧ . . . ∧ Fm,m ≥ 1 of F :

All free variables must be bounded:

• Let 1 ≤ j ≤ m.

• if Fj is neither a comparison, nor a negated formula, any free variable in Fj is
bounded,

• if Fj is of the form X = a or a = X with a a constant, then X is bounded,

• if Fj is of the form X = Y or Y = X and Y is bounded, then X is also bounded.

(a subformula G of a formula F is a maximal conjunctive subformula, if there is no
conjunctive subformula H of F such that G is a subformula of H). 2

409

Example 8.10
• X = Y ∨R(X,Z) is not safe

• X = Y ∧R(X,Y) is safe

• R(X,Y, Z) ∧ ¬(S(X,Y) ∨ T (Y, Z)) is not safe, but the logically equivalent formula

R(X,Y, Z) ∧ ¬S(X,Y) ∧ ¬T (Y, Z)

is safe. 2

• safety is defined purely syntactically

• safety can be tested effectively

• safety implies domain-independence
(proof by induction on the number of maximal conjunctive subformulas).

410

8.4 Equivalence of Algebra and (safe) Calculus

As for the algebra, the attributes of each relation are assumed to be ordered.

Theorem 8.1
For each expression Q of the relational algebra there is an equivalent safe formula F of the
relational calculus, and vice versa; i.e., for every state S, Q and F define the same answer
relation. 2

411

Proof:

(A) Algebra to Calculus

Let Q an expression of the relational algebra. The proof is done by induction over the
structure of Q (as an operator tree). The formulas that are generated are always safe.

Induction base: Q does not contain operators.

• if Q = R where R is a relation symbol of arity n ≥ 1:

F (Z1, . . . , Zn) = R(Z1, . . . , Zn)

R

A1 A2

a b

1 2

Q: R answer to R(Z1, Z2):

Z1 Z2

a b

1 2

• otherwise, Q = {c}, c ∈ D. Then, F (Z) = (Z = c).

{c}

?

c

Answer to Z = c:
Z

c

412

Induction step:

Assume that Q1 is equivalent to F1(X1, . . . , Xm) and Q2 is equivalent to F2(Y1, . . . , Yn).

• Case Q = Q1 ∪Q2 where ΣQ1 = ΣQ2 and | ΣQ1 |= n ≥ 1.

F (Z1, . . . , Zn) = ∃ X1, . . . , ∃Xn (F1(X1, . . . , Xn) ∧ Z1 = X1 ∧ . . . ∧ Zn = Xn) ∨
∃ Y1, . . . , ∃Yn (F2(Y1, . . . , Yn) ∧ Z1 = Y1 ∧ . . . ∧ Zn = Yn).

Example:

Q1

A1 A2

a b

c d

F1(X1 X2)

a b

c d

Q2

A1 A2

1 2

c d

F2(Y1 Y2)

1 2

c d

F (Z1 Z2)

a b

c d

1 2

413

• Case Q = Q1 −Q2. The same, replace . . .∨ . . . by . . .∧¬(. . .).

• Case Q = π[Y]Q1 and Y = {Ai1 , . . . , Aik} ⊆ ΣQ1 , k ≥ 1.

F (Z1, . . . , Zk) = ∃X1, . . . , ∃Xn(F1(X1, . . . , Xn) ∧ Z1 = Xi1 ∧ . . . ∧ Zk = Xik).

Example:

Q1

A1 A2

a b

c d

F1(X1 X2)

a b

c d

Let Y = {A2}: F (Z1) = ∃X1, ∃X2(F1(X1, X2) ∧ Z1 = X2)

F (Z1)

b

d

414

• Case Q = σ[α]Q1, Ai, Aj ∈ ΣQ1
and n ≥ 1.

F (X1, . . . , Xn) = F1(X1, . . . , Xn) ∧ α′, where α′ =

Xi θ ai for α = (Ai θ ai),

ai θXi for α = (ai θ Ai),

Xi θXj for α = (Ai θ Aj).

Example:

Q1

A1 A2

1 2

3 4

F1(X1 X2)

1 2

3 4

Let σ = “A1 = 3”: F (Z1, Z2) = F1(X1, X2) ∧ Z1 = 3

F (Z1 Z2)

3 4

415

• Case Q = Q1 ⊲⊳ Q2 and ΣQ1
= {A1, . . . , Am}, ΣQ2

= {B1, . . . , Bn}, n,m ≥ 1. Let w.l.o.g.
A1 = B1, . . . , Ak = Bk for some k ≤ n,m.

F (X1, . . . , Xm, Yk+1, . . . , Yn) = (F1(X1, . . . , Xm) ∧ F2(Y1, . . . , Yn) ∧
∧X1 = Y1 ∧ . . . ∧Xk = Yk).

Example:

Q1

AB1 A2

1 2

3 4

Q2

AB1 B2

5 6

1 7

F1(X1 X2)

1 2

3 4

F2(Y1 Y2)

5 6

1 7

F (Z1, Z2, Z3) = F1(X1, X2) ∧ F2(Y1, Y2) ∧X1 = Y1

F (Z1 Z2 Z3)

1 2 7

Note again that the resulting formulas F are safe.

416

(B) Calculus to Algebra

Consider a safe formula F (X1, . . . , Xn), n ≥ 1 of the relational calculus.

First, an algebra expression E that computes the active domain DOM(F) of the formula and
the database is derived:

Assume R1, . . . , Rn, n ≥ 0 to be the relation names in F . For k-ary Ri,

E(Ri) = π[$1](Ri) ∪ . . . ∪ π[$k](Ri).

Let

E = E(R1) ∪ . . . E(Rn) ∪ {a1, . . . , am},

where aj , 1 ≤ j ≤ m are the constants in F .

• E(S) is a unary relation.

417

An equivalent algebra expression Q is now constructed by induction over the number of
maximal conjunctive subformulas of F .

Induction base: F has exactly one maximal conjunctive subformula. Thus,
F = G1 ∧ . . . ∧Gl, l ≥ 1.

(1) Case l = 1.
Then, either F = R(a1, . . . , ak), where ai are variablen or constants, or F is a comparison
of one of the forms F = (X = a) or F = (a = X), where X is a variable and a is a
constante (note that all other comparisons would not be safe).

– Case F = R(a1, . . . , ak), e.g. F = R(a,X, b, Y, a,X). Then, let

Q = π[$2, $4](σ[Θ1 ∧Θ2](R)) ,

where

Θ1 = ($1 = a ∧ $3 = b ∧ $5 = a)

and

Θ2 = ($2 = $6)

– Case F = (X = a) or F = (a = X). Let

Q = {a} .

418

(2) Case l > 1 (cf. example below) Then, w.l.o.g.

F = G1 ∧ . . . ∧Gu ∧Gu+1 ∧ . . . ∧Gv

s.t. u+ v > 1, where all Gi, 1 ≤ i ≤ u as in (1) and all Gj , u < j ≤ v are other
comparisons.

For every Gi, 1 ≤ i ≤ u take an algebra expression Q(Gi) as done in (1), where the
format ΣQ(Gi) is just the set of free variables in Gi. Let

Q′ = ⊲⊳ui=1 Q(Gi).

With Θ the conjunction of the selection conditions Gu+1, . . ., Gv,

Q = σ[Θ]Q′ .

Example 8.11
Consider F = R(a,X, b, Y, a,X) ∧ S(X,Z, a) ∧X = Y

as F = G1 ∧G2 ∧G3:

Q(G1) = π[$2, $4](σ[$1 = a ∧ $3 = b ∧ $5 = a ∧ $1 = $6](R))

Q(G2) = π[$1, $2](σ[$3 = a](S))

Q(F) = σ[X = Y](([$1→ X, $2→ Y]Q(G1)) ⊲⊳ ([$1→ X, $2→ Z]Q(G2))) 2

419

Induction Step: For formulas F,G,H, . . . with maximal n− 1 maximal conjunctive
subformulas, the equivalent algebra expressions are Q(F), Q(G), Q(H),

(3) F = ∃XG.

Q = π[$1, . . . , $k](Q(G)) ,

where G has k + 1, k ≥ 0 free variables, and w.l.o.g. X is the k + 1th free variable.

(4) F = G ∨H.

Q = Q(G) ∪Q(H)

(safety guarantees that G and H have the same free variables, thus, Q(G) and Q(H)

have the same format).

(5) F = G1 ∧ . . . ∧Gl, l ≥ 1 where some Gi are of the form ¬Hi. Then,

Q(Gi) = Ek −Q(Hi)

where Q(Hi) is k-ary.

Q is then constructed analogous to (2).

420

