
Chapter 8
Relational Database Languages:
Relational Calculus
Overview

• Described up to now: relational algebra, SQL

• the relational calculus is a specialization of the first-order calculus, tailored to relational
databases.

• straightforward: the only structuring means of relational databases are relations – each
relation can be seen as an interpretation of a predicate.

• there exists a declarative semantics.
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8.1 First-Order Logic and the Relational Calculus

The relational calculus is a specialization of first-order logic.
(This section can be skipped or compressed depending on the knowledge of the participants)

8.1.1 Syntax

• first-order language contains a set of distinguished symbols:

– “(” and “)”, logical symbols ¬, ∧, ∨,→, quantifiers ∀, ∃,
– an infinite set of variables X,Y , X1, X2, . . ..

• An individual first-order language is then given by its signature Σ. Σ contains function
symbols and predicate symbols , each of them with a given arity.

For databases:

• the relation names are the predicate symbols (with arity),
e.g. continent/2, encompasses/3, etc.

• there are only 0-ary function symbols, i.e., constants .

• thus, the database schema R is the signature.
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Syntax (Cont’d).

Terms

The set of terms over Σ is defined inductively as

• each variable is a term,

• for every function symbol f ∈ Σ with arity n and terms t1, . . . , tn, also f(t1, . . . , tn) is a
term.

0-ary function symbols: c, 1,2,3,4, “Berlin”,. . .

Example: for plus/2, the following are terms: plus(3, 4), plus(plus(1, 2), 4), plus(X, 2).

• ground terms are terms without variables.

For databases:

• since there are no function symbols,

• the only terms are the constants and variables
e.g., 1, 2, “D”, “Germany”, X, Y, etc.
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Syntax (Cont’d): Formulas

Formulas are built inductively (using the above-mentioned special symbols) as follows:

Atomic Formulas

(1) For a predicate symbol (i.e., a relation name) R of arity k, and terms t1, . . . , tk,
R(t1, . . . , tk) is a formula.

(2) (for databases only, as special predicates )
A selection condition is an expression of the form t1 θ t2 where t1, t2 are terms, and θ is
a comparison operator in {=,6=,≤,<,≥,>}.
Every selection condition is a formula.

(both are also called positive literals )

For databases:

• the atomic formulas are the predicates built over relation names and these constants,
e.g.,
continent(“Asia”,4.5E7), encompasses(“R”,“Asia”,X), country(N,CC,Cap,Prov,Pop,A).

• comparison predicates (i.e., the “selection conditions”) are atomic formulas, e.g.,
X = “Asia”, Y > 10.000.000 etc.
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Syntax (Cont’d).

Compound Formulas

(3) For a formula F , also ¬F is a formula. If F is an atom, ¬F is called a negative literal .

(4) For a variable X and a formula F , ∀X : F and ∃F : X are formulas. F is called the scope
of ∃ or ∀, respectively.

(5) For formulas F and G , the conjunction F ∧G and the disjunction F ∨G are formulas.

For formulas F and G, where G (regarded as a string) is contained in F , G is a subformula
of F .

The usual priority rules apply (allowing to omit some parentheses).

• instead of F ∨ ¬G, the implication syntax F ← G or G→ F can be used, and

• (F → G) ∧ (F ← G) is denoted by the equivalence F ↔ G.
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Syntax (Cont’d).

Bound and Free Variables

An occurrence of a variable X in a formula is

• bound (by a quantifier) if the occurrence is in a formula A inside ∃X : A or ∀X : A (i.e., in
the scope of an appropriate quantifier).

• free otherwise, i.e.,if it is not bound by any quantifier.

Formulas without free variables are called closed .

Example:

• continent(“Asia”, X): X is free.

• continent(“Asia”, X) ∧X > 10.000.000: X is free.

• ∃X : (continent(“Asia”, X) ∧X > 10.000.000): X is bound.
The formula is closed.

• ∃X : (continent(X,Y )): X is bound, Y is free.

• ∀Y : (∃X : (continent(X,Y ))): X and Y are bound.
The formula is closed.
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Outlook:

• closed formulas either hold in a database state, or they do not hold.

• free variables represent answers to queries:
?- continent(“Asia”, X) means “for which value x does continent(“Asia”, x) hold?”
Answer: for x = 4.5E7.

• ∃Y : (continent(X,Y )): means
“for which values x is there an y such that continent(x, y) holds? – we are not interested
in the value of y”
The answer are all names of continents, i.e., that x can be “Asia”, “Europe”, or . . .

... so we have to evaluate formulas (“semantics”).
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8.1.2 Semantics

The semantics of first-order logic is given by first-order structures over the signature:

First-Order Structure

A first-order structure S = (I,D) over a signature Σ consists of a nonempty set D (domain )
and an interpretation I of the signature symbols over D which maps

• every constant c to an element I(c) ∈ D,

• every n-ary function symbol f to an n-ary function I(f) : Dn → D,

• every n-ary predicate symbol p to an n-ary relation I(p) ⊆ Dn.

For Databases:

• no function symbols with arity > 0
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First-Order Structures: An Example

Example 8.1 (First-Order Structure)
Signature: constant symbols: zero, one, two, three, four, five

predicate symbols: green/1, red/1, sees/2

function symbols: to_right/1, plus/2

Structure S:

1

23

4

5 6

Domain D = {0, 1, 2, 3, 4, 5}
Interpretation of the signature:
I(zero) = 0, I(one) = 1, . . . , I(five) = 5

I(green) = {(2), (5)}, I(red) = {(0), (1), (3), (4)}
I(sees) = {(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)}
I(to_right) = { (0) 7→ (1), (1) 7→ (2), (2) 7→ (3),

(3) 7→ (4), (4) 7→ (5), (5) 7→ (0)}
I(plus) = {(n,m) 7→ (n+m) mod 6 | n,m ∈ D}

Terms: one, to_right(four), to_right(to_right(X)), to_right(to_right(to_right(four))),
plus(X, to_right(zero)), to_right(plus(to_right(four), five))

Atomic Formulas: green(1), red(to_right(to_right(to_right(four)))), sees(X,Y ),

sees(X, to_right(Z)), sees(to_right(to_right(four)), to_right(one)),
plus(to_right(to_right(four)), to_right(one)) = to_right(three) 2
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SUMMARY: NOTIONS FOR DATABASES

• a set R of relational schemata; logically spoken, R is the signature ,

• a database state is a structure S over R

• D contains all domains of attributes of the relation schemata,

• for every single relation schema R = (X̄) where X̄ = {A1, . . . , Ak}, we write
R[A1, . . . , Ak]. k is the arity of the relation name R.

• relation names are the predicate symbols. They are interpreted by relations, e.g.,
I(encompasses)

(which we also write as S(encompasses)).

For Databases:

• no function symbols with arity > 0

• constants are interpreted “by themselves”:
I(4) = 4, I(“Asia”) = “Asia”

• care for domains of attributes.
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Evaluation of Terms and Formulas

Terms and formulas must be evaluated under a given interpretation – i.e., wrt. a given
database state S.

• Terms can contain variables.

• variables are not interpreted by S.

A variable assignment over a universe D is a mapping

β : V ariables→ D .

For a variable assignment β, a variable X, and d ∈ D, the modified variable assignment βd
X

is identical with β except that it assigns d to the variable X:

βd
X =





Y 7→ β(Y ) for Y 6= X ,

X 7→ d otherwise.

Example 8.2
For variables X,Y, Z, β = {X 7→ 1, Y 7→ “Asia”, Z 7→ 3.14} is a variable assignment.

β3
X = {X 7→ 3, Y 7→ “Asia”, Z 7→ 3.14}. 2
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Evaluation of Terms

Terms and formulas are interpreted

• under a given interpretation S, and

• wrt. a given variable assignment β.

For Databases:

• S is a database state.

• Σ is a purely relational signature,

• no function symbols with arity > 0, no nontrivial terms,

• constants are interpreted “by themselves”.

Every interpretation S together with a variable assignment β induces an evaluation S of terms
(S(t, β) ∈ D) and tuples of terms:

For Databases: S(x, β) := β(x) for a variable x ,

S(c, β) := c for a constant c .
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Evaluation of Terms

Relevant only for full first-order logic:

S(x, β) := β(x) for a variable x ,

S(f(t1, . . . , tn), β) := (I(f))(S(t1, β), . . . ,S(tn, β))
for a function symbol f ∈ Σ with arity n and terms t1, . . . , tn.

Example 8.3 (Evaluation of Terms)
Consider again Example 8.1.

• For variable-free terms: β = ∅.

• S(one, ∅) = I(one) = 1

• S(to_right(four), ∅) = I(to_right(S(four, ∅)) = I(to_right(4)) = 5

• S(to_right(to_right(to_right(four))), ∅) = I(to_right(S(to_right(to_right(four)), ∅))) =
I(to_right(I(to_right(S(to_right(four), ∅))))) = I(to_right(I(to_right(5)))) =
I(to_right(6)) = 1 2
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Example 8.3 (Continued)
• Let β = {X 7→ 3}.
S(to_right(to_right(X)), β) = I(to_right(S(to_right(X), β))) =

I(to_right(I(to_right(S(X, β))))) = I(to_right(I(to_right(β(X))))) =

I(to_right(I(to_right(3)))) = I(to_right(4)) = 5

• Let β = {X 7→ 3}.
S(plus(X, to_right(zero)), ∅) = I(plus(S(X, β),S(to_right(zero), β))) =
I(plus(β(X), I(to_right(S(zero, β))))) = I(plus(3, I(to_right(I(zero))))) =
I(plus(3, I(to_right(0)))) = I(plus(3, 1)) = 4 2
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EVALUATION OF FORMULAS

Formulas can either hold, or not hold in a database state.

Truth Value

Let F a formula, S an interpretation, and β a variable assignment of the free variables in F

(denoted by free(F )).

Then we write S |=β F if “F is true in S wrt. β”.

Formally, |= is defined inductively.
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TRUTH VALUES OF FORMULAS : INDUCTIVE DEFINITION

Motivation: variable-free atoms

For an atom R(a1, . . . , ak), where ai, 1 ≤ i ≤ k are constants,

R(a1, . . . , ak) is true in S if and only if (I(a1), . . . , I(ak)) ∈ S(R).

Otherwise, R(a1, . . . , ak) is false in S.

Base Case: Atomic Formulas

The truth value of an atom R(t1, . . . , tk), where ti, 1 ≤ i ≤ k are terms, is given as

S |=β R(t1, . . . , tk) if and only if (S(t1), . . . ,S(tk)) ∈ S(R) .

For Databases:

• the ti can only be constants or variables.
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TRUTH VALUES OF FORMULAS : INDUCTIVE DEFINITION

(2) t1 θ t2 with θ a comparison operator in {=,6=,≤,<,≥,>}:
S |=β t1 θ t2 if and only if S(t1, β) θ S(t2, β) holds.

(3) S |=β ¬G if and only if S 6|=β G.

(4) S |=β G ∧H if and only if S |=β G and S |=β H.

(5) S |=β G ∨H if and only if S |=β G or S |=β H.

(6) S |=β ∀XG if and only if for all d ∈ D, S |=βd
X
G.

(7) S |=β ∃XG if and only if for some d ∈ D, S |=βd
X
G.
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Example 8.4 (Evaluation of Atomic Formulas)
Consider again Example 8.1.

• For variable-free formulas, let β = ∅
• S |=∅ green(1) ⇔ (1) ∈ I(green) – which is not the case. Thus, S 6|=∅ green(1).

• S |=∅ red(to_right(to_right(to_right(four)))) ⇔
(S(to_right(to_right(to_right(four))), ∅)) ∈ I(red) ⇔ (6) ∈ I(red)

which is the case. Thus, S |=∅ red(to_right(to_right(to_right(four)))).

• Let β = {X 7→ 3, Y 7→ 5}.
S |=β sees(X,Y ) ⇔ (S(X, β),S(Y, β)) ∈ I(sees) ⇔ (3, 5) ∈ I(sees)

which is not the case.

• Again, β = {X 7→ 3, Y 7→ 5}.
S |=β sees(X, to_right(Y )) ⇔ (S(X, β),S(to_right(Y ), β)) ∈ I(sees) ⇔ (3, 6) ∈ I(sees)

which is the case.

•
S |=β plus(to_right(to_right(four)), to_right(one)) = to_right(three) ⇔
S(plus(to_right(to_right(four)), to_right(one)), ∅) = S(to_right(three), ∅) ⇔ 2 = 4

which is not the case. 2
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Example 8.5 (Evaluation of Compound Formulas)
Consider again Example 8.1.

• S |=∅ ∃X : red(X) ⇔
there is a d ∈ D such that S |=∅d

X
red(X) ⇔ there is a d ∈ D s.t. S |={X 7→d} red(X)

Since we have shown above that S |=∅ red(6), this is the case.

• S |=∅ ∀X : green(X) ⇔
for all d ∈ D, S |=∅d

X
green(X) ⇔ for all d ∈ D, S |={X 7→d} green(X)

Since we have shown above that S 6|=∅ green(1) this is not the case.

• S |=∅ ∀X : (green(X) ∨ red(X)) ⇔ for all d ∈ D, S |={X 7→d} (green(X) ∨ red(X)).
One has now to check whether S |={X 7→d} (green(X) ∨ red(X)) for all d ∈ domain.
We do it for d = 3:
S |={X 7→3} (green(X) ∨ red(X)) ⇔
S |={X 7→3} green(X) or S |={X 7→3} red(X) ⇔
(S(X, {X 7→ 3})) ∈ I(green) or (S(X, {X 7→ 3})) ∈ I(red) ⇔
(3) ∈ I(green) or (3) ∈ I(red)

which is the case since (3) ∈ I(red).

• Similarly, S 6|=∅ ∀X : (green(X) ∧ red(X)) 2
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8.2 Formulas as Queries

Formulas can be seen as queries :

• For a formula F with free variables X1, . . . , Xn, n ≥ 1, we write F (X1, . . . , Xn).

• each formula F (X1, . . . , Xn) defines – dependent on a given interpretation S – an
answer relation S(F (X1, . . . , Xn)).

The answer set to F (X1, . . . , Xn) wrt. S is the set of tuples (a1, . . . , an), ai ∈ D,
1 ≤ i ≤ n, such that F is true in S when assigning each of the variables Xi to the
constant ai, 1 ≤ i ≤ n.

Formally:

S(F ) = {(β(X1), . . . , β(Xn)) | S |=β F where β is a variable assignment of free(F )}.

• for n = 0, the answer to F is true if S |=∅ F for the empty variable assignment ∅;
the answer to F is false if S 6|=∅ F for the empty variable assignment ∅.
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Example 8.6
Consider the MONDIAL schema.

• Which cities (CName, Country) have at least 1.000.000 inhabitants?

F (CN,C) = ∃ Pr, Pop, L1, L2 (city(CN,C, Pr, Pop, L1, L2)∧ Pop ≥ 1000000)

• Which countries (CName) belong to Europe?

F (CName) = ∃ CCode, Cap, Capprov, Pop,A,ContName,ContArea

(country(CName,CCode, Cap, Capprov, Pop,A) ∧
continent(ContName,ContArea) ∧
ContName = ’Europe’ ∧ encompasses(ContName,CCode) )

2
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Example 8.6 (Continued)
• Again, relational division ...

Which organizations have at least one member on each continent

F (Abbrev) = ∃O,HeadqN,HeadqC,HeadqP,Est :

(organization(O,Abbrev,HeadqN,HeadqC,HeadqP,Est)∧
∀Cont : ((∃ContArea : continent(Cont, ContArea))→

∃Country, Perc, Type : (encompasses(Country, Cont, Perc) ∧
isMember(Country, Abbrev, Type))))

• Negation
All pairs (country,organization) such that the country is a member in the organization, and
all its neighbors are not.

F (CCode,Org) = ∃CName,Cap, Capprov, Pop,Area, Type :

(country(CName,CCode, Cap, Capprov, Pop,Area)∧
isMember(CCode,Org, Type) ∧
∀CCode′ : (∃Length : sym_borders(CCode, CCode′, Length)→

¬∃Type′ : isMember(CCode′, Org, Type′)))

2
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8.3 Comparison of the Algebra and the Calculus

Calculus: The semantics (= answer) of a query in the relational calculus is defined via the
truth value of a formula wrt. an interpretation

“declarative Semantics”.

Algebra: The semantics is given by evaluating an algebraic expression (i.e., an operator tree)

“algebraic Semantics”.
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EXAMPLE : EXPRESSING ALGEBRA OPERATIONS IN THE CALCULUS

Consider relation schemata R[A,B], S[B,C], and T [A].

• Projection π[A]R:
F (X) = ∃Y R(X,Y )

• Selection σ[A = B]R:
F (X,Y ) = R(X,Y ) ∧X = Y

• Join R ⊲⊳ S:
F (X,Y, Z) = R(X,Y ) ∧ S(Y, Z)

• Union R ∪ (T × {b}):
F (X,Y ) = R(X,Y ) ∨ (T (X) ∧ Y = b)

• Difference R− (T × {b}):

F (X,Y ) = R(X,Y ) ∧ ¬(T (X) ∧ Y = b)

• Division R÷ T :

F (Y ) = ∀X : (T (X)⇒ R(X,Y )) or F (X) = ¬∃X : (T (X) ∧ ¬R(X,Y ))
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SAFETY AND DOMAIN-INDEPENDENCE

• If the domain D is infinite, the answer relations to some expressions of the calculus can
be infinite!

Example 8.7
Let

F (X) = ¬R(X),

(“give me all a such that R(a) does not hold”)
where S(R) = {1}.
Depending on D, S(F ) is infinite. 2

Example 8.8
Let

F (X,Z) = ∃Y (R(X,Y ) ∨ S(Y, Z)),

Consider S(R) = {(1, 1)}, arbitrary S(S) (even empty).

Which Z? 2
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Example 8.9
Consider a database of persons:

married(X,Y): X is married with Y.

F (X) = ¬married(john,X)∧ 6 (X = john).

What is the answer?

• Consider D = {john,mary}, S(married) = {(john,mary), (mary, john)}.
S(F ) = ∅.
– there is no person (except John) who is not married with John

– all persons are married with John??? 2

• Consider D = {john,mary, sue}, S(married) = {(john,mary), (mary, john)}.
S(F ) = {sue}.
The answer depends not only on the database, but on the domain (that is a purely logical
notion)

Obviously, it is meant “All persons in the database who are not married with john”.

406



Active Domain

Requirement: the answer to a query depends only on

• constants given in the query

• constants in the database

Definition 8.1
Given a formula F of the relational calculus and a database state S, DOM(F ) contains

• all constants in F ,

• and all constants in S(R) where R is a relation name that occurs in F .

DOM(F ) is called the active domain domain of F . 2

DOM(F ) is finite.
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Domain-Independence

Formulas in the relational calculus are required to be domain-independent :

Definition 8.2
A formula F (X1, . . . , Xn) is domain-independent if for all D ⊇ DOM(F ),

S(F ) = {(β(X1), . . . , β(Xn)) | S |=β F, β(Xi) ∈ DOM(F ) for all 1 ≤ i ≤ n}
= {(β(X1), . . . , β(Xn)) | S |=β F, β(Xi) ∈ D for all 1 ≤ i ≤ n}.

2

It is undecidable whether a formula F is domain-independent!
(follows from Rice’s Theorem).

Instead, (syntactical) safety is required for queries:

• stronger condition

• can be tested algorithmically
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Safety

Definition 8.3
A formula F is (syntactically) safe if and only if it satisfies the following conditions:

1. F does not contain ∀ quantifiers. (for formal simplicity since ∀XG can always be replaced
by ¬∃X¬G)

2. if F1 ∨ F2 is a subformula of F , then F1 and F2 must have the same free variables.

3. for all maximal conjunctive subformulas F1 ∧ . . . ∧ Fm,m ≥ 1 of F :

All free variables must be bounded:

• Let 1 ≤ j ≤ m.

• if Fj is neither a comparison, nor a negated formula, any free variable in Fj is
bounded,

• if Fj is of the form X = a or a = X with a a constant, then X is bounded,

• if Fj is of the form X = Y or Y = X and Y is bounded, then X is also bounded.

(a subformula G of a formula F is a maximal conjunctive subformula, if there is no
conjunctive subformula H of F such that G is a subformula of H). 2
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Example 8.10
• X = Y ∨R(X,Z) is not safe

• X = Y ∧R(X,Y ) is safe

• R(X,Y, Z) ∧ ¬(S(X,Y ) ∨ T (Y, Z)) is not safe, but the logically equivalent formula

R(X,Y, Z) ∧ ¬S(X,Y ) ∧ ¬T (Y, Z)

is safe. 2

• safety is defined purely syntactically

• safety can be tested effectively

• safety implies domain-independence
(proof by induction on the number of maximal conjunctive subformulas).
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8.4 Equivalence of Algebra and (safe) Calculus

As for the algebra, the attributes of each relation are assumed to be ordered.

Theorem 8.1
For each expression Q of the relational algebra there is an equivalent safe formula F of the
relational calculus, and vice versa; i.e., for every state S, Q and F define the same answer
relation. 2
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Proof:

(A) Algebra to Calculus

Let Q an expression of the relational algebra. The proof is done by induction over the
structure of Q (as an operator tree). The formulas that are generated are always safe.

Induction base: Q does not contain operators.

• if Q = R where R is a relation symbol of arity n ≥ 1:

F (Z1, . . . , Zn) = R(Z1, . . . , Zn)

R

A1 A2

a b

1 2

Q: R answer to R(Z1, Z2):

Z1 Z2

a b

1 2

• otherwise, Q = {c}, c ∈ D. Then, F (Z) = (Z = c).

{c}

?

c

Answer to Z = c:
Z

c
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Induction step:

Assume that Q1 is equivalent to F1(X1, . . . , Xm) and Q2 is equivalent to F2(Y1, . . . , Yn).

• Case Q = Q1 ∪Q2 where ΣQ1 = ΣQ2 and | ΣQ1 |= n ≥ 1.

F (Z1, . . . , Zn) = ∃ X1, . . . , ∃Xn (F1(X1, . . . , Xn) ∧ Z1 = X1 ∧ . . . ∧ Zn = Xn) ∨
∃ Y1, . . . , ∃Yn (F2(Y1, . . . , Yn) ∧ Z1 = Y1 ∧ . . . ∧ Zn = Yn).

Example:

Q1

A1 A2

a b

c d

F1( X1 X2 )

a b

c d

Q2

A1 A2

1 2

c d

F2( Y1 Y2 )

1 2

c d

F ( Z1 Z2 )

a b

c d

1 2
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• Case Q = Q1 −Q2. The same, replace . . .∨ . . . by . . .∧¬( . . . ).

• Case Q = π[Y ]Q1 and Y = {Ai1 , . . . , Aik} ⊆ ΣQ1 , k ≥ 1.

F (Z1, . . . , Zk) = ∃X1, . . . , ∃Xn(F1(X1, . . . , Xn) ∧ Z1 = Xi1 ∧ . . . ∧ Zk = Xik).

Example:

Q1

A1 A2

a b

c d

F1( X1 X2 )

a b

c d

Let Y = {A2}: F (Z1) = ∃X1, ∃X2(F1(X1, X2) ∧ Z1 = X2)

F ( Z1 )

b

d
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• Case Q = σ[α]Q1, Ai, Aj ∈ ΣQ1
and n ≥ 1.

F (X1, . . . , Xn) = F1(X1, . . . , Xn) ∧ α′, where α′ =





Xi θ ai for α = (Ai θ ai),

ai θXi for α = (ai θ Ai),

Xi θXj for α = (Ai θ Aj).

Example:

Q1

A1 A2

1 2

3 4

F1( X1 X2 )

1 2

3 4

Let σ = “A1 = 3”: F (Z1, Z2) = F1(X1, X2) ∧ Z1 = 3

F ( Z1 Z2 )

3 4
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• Case Q = Q1 ⊲⊳ Q2 and ΣQ1
= {A1, . . . , Am}, ΣQ2

= {B1, . . . , Bn}, n,m ≥ 1. Let w.l.o.g.
A1 = B1, . . . , Ak = Bk for some k ≤ n,m.

F (X1, . . . , Xm, Yk+1, . . . , Yn) = (F1(X1, . . . , Xm) ∧ F2(Y1, . . . , Yn) ∧
∧X1 = Y1 ∧ . . . ∧Xk = Yk).

Example:

Q1

AB1 A2

1 2

3 4

Q2

AB1 B2

5 6

1 7

F1( X1 X2 )

1 2

3 4

F2( Y1 Y2 )

5 6

1 7

F (Z1, Z2, Z3) = F1(X1, X2) ∧ F2(Y1, Y2) ∧X1 = Y1

F ( Z1 Z2 Z3 )

1 2 7

Note again that the resulting formulas F are safe.
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(B) Calculus to Algebra

Consider a safe formula F (X1, . . . , Xn), n ≥ 1 of the relational calculus.

First, an algebra expression E that computes the active domain DOM(F ) of the formula and
the database is derived:

Assume R1, . . . , Rn, n ≥ 0 to be the relation names in F . For k-ary Ri,

E(Ri) = π[$1](Ri) ∪ . . . ∪ π[$k](Ri).

Let

E = E(R1) ∪ . . . E(Rn) ∪ {a1, . . . , am},

where aj , 1 ≤ j ≤ m are the constants in F .

• E(S) is a unary relation.
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An equivalent algebra expression Q is now constructed by induction over the number of
maximal conjunctive subformulas of F .

Induction base: F has exactly one maximal conjunctive subformula. Thus,
F = G1 ∧ . . . ∧Gl, l ≥ 1.

(1) Case l = 1.
Then, either F = R(a1, . . . , ak), where ai are variablen or constants, or F is a comparison
of one of the forms F = (X = a) or F = (a = X), where X is a variable and a is a
constante (note that all other comparisons would not be safe).

– Case F = R(a1, . . . , ak), e.g. F = R(a,X, b, Y, a,X). Then, let

Q = π[$2, $4](σ[Θ1 ∧Θ2](R)) ,

where

Θ1 = ($1 = a ∧ $3 = b ∧ $5 = a)

and

Θ2 = ($2 = $6)

– Case F = (X = a) or F = (a = X). Let

Q = {a} .
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(2) Case l > 1 (cf. example below) Then, w.l.o.g.

F = G1 ∧ . . . ∧Gu ∧Gu+1 ∧ . . . ∧Gv

s.t. u+ v > 1, where all Gi, 1 ≤ i ≤ u as in (1) and all Gj , u < j ≤ v are other
comparisons.

For every Gi, 1 ≤ i ≤ u take an algebra expression Q(Gi) as done in (1), where the
format ΣQ(Gi) is just the set of free variables in Gi. Let

Q′ = ⊲⊳ui=1 Q(Gi).

With Θ the conjunction of the selection conditions Gu+1, . . ., Gv,

Q = σ[Θ]Q′ .

Example 8.11
Consider F = R(a,X, b, Y, a,X) ∧ S(X,Z, a) ∧X = Y

as F = G1 ∧G2 ∧G3:

Q(G1) = π[$2, $4](σ[$1 = a ∧ $3 = b ∧ $5 = a ∧ $1 = $6](R))

Q(G2) = π[$1, $2](σ[$3 = a](S))

Q(F ) = σ[X = Y ](([$1→ X, $2→ Y ]Q(G1)) ⊲⊳ ([$1→ X, $2→ Z]Q(G2))) 2
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Induction Step: For formulas F,G,H, . . . with maximal n− 1 maximal conjunctive
subformulas, the equivalent algebra expressions are Q(F ), Q(G), Q(H), . . ..

(3) F = ∃XG.

Q = π[$1, . . . , $k](Q(G)) ,

where G has k + 1, k ≥ 0 free variables, and w.l.o.g. X is the k + 1th free variable.

(4) F = G ∨H.

Q = Q(G) ∪Q(H)

(safety guarantees that G and H have the same free variables, thus, Q(G) and Q(H)

have the same format).

(5) F = G1 ∧ . . . ∧Gl, l ≥ 1 where some Gi are of the form ¬Hi. Then,

Q(Gi) = Ek −Q(Hi)

where Q(Hi) is k-ary.

Q is then constructed analogous to (2).
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