
EXAMPLES

Time to play. Perhaps postpone examples after comparison with SQL (next subsections)

Aspects

• join as “extending” operation (cartesian product – “all pairs of X and Y such that ...”)

• equijoin as “restricting” operation

• natural join/equijoin in many cases along key/foreign key relationships

• relational division (in case of queries of the style “return all X that are in a given relation
with all Y such that ...”)

110

3.2 SQL

SQL: Structured (Standard) Query Language

Literature: A Guide to the SQL Standard, 3rd Edition, C.J. Date and H. Darwen,
Addison-Wesley 1993

History: about 1974 as SEQUEL (IBM System R, INGRES@Univ. Berkeley, first product:
Oracle in 1978)

Standardization:

SQL-86 and SQL-89: core language, based on existing implementations, including
procedural extensions

SQL-92 (SQL2): some additions

SQL-99 (SQL3):

• active rules (triggers)

• recursion

• object-relational and object-oriented concepts

111

Underlying Data Model

SQL uses the relational model:

• SQL relations are multisets (bags) of tuples (i.e., they can contain duplicates)

• Notions: Relation ; Table

Tuple ; Row

Attribute ; Column

The relational algebra serves as theoretical base for SQL as a query language.

• comprehensive treatment in the “Practical Training SQL”
(http://dbis.informatik.uni-goettingen.de/Teaching/DBP/)

112

BASIC STRUCTURE OF SQL QUERIES

SELECT A1, . . . , An (. . . corresponds to π in the algebra)
FROM R1, . . . , Rm (. . . specifies the contributing relations)
WHERE F (. . . corresponds to σ in the algebra)

corresponds to the algebra expression π[A1, . . . , An](σ[F](r1 × . . . × rm))

• Note: cartesian product → prefixing (optional)

Example

SELECT code, capital, country.population, city.population

FROM country, city

WHERE country.code = city.country

AND city.name = country.capital

AND city.province = country.province;

113

PREFIXING, ALIASING AND RENAMING

• Prefixing: tablename.attr

• Aliasing of relations in the FROM clause:

SELECT alias1.attr1,alias2.attr2

FROM table1 alias1, table2 alias2

WHERE ...

• Renaming of result columns of queries:

SELECT attr1 AS name1, attr2 AS name2

FROM ... WHERE ...

(formal algebra equivalent: renaming)

114

SUBQUERIES

Subqueries of the form (SELECT ... FROM ... WHERE ...) can be used anywhere where a
relation is required:

Subqueries in the FROM clause allow for selection/projection/computation of intermediate
results/subtrees before the join:

SELECT ...

FROM (SELECT ...FROM ...WHERE ...),

(SELECT ...FROM ...WHERE ...)

WHERE ...

(interestingly, although “basic relational algebra”, this has been introduced e.g. in Oracle only
in the early 90s)

Subqueries in other places allow to express other intermediate results:

SELECT ... (SELECT ...FROM ...WHERE ...) FROM ...

WHERE [NOT] value1 IN (SELECT ...FROM ...WHERE)

AND [NOT] value2 comparison-op [ALL|ANY] (SELECT ...FROM ...WHERE)

AND [NOT] EXISTS (SELECT ...FROM ...WHERE);

115

SUBQUERIES IN THE FROM CLAUSE

• often in combination with aliasing and renaming of the results of the subqueries.

SELECT alias1.name1,alias2.name2

FROM (SELECT attr1 AS name1 FROM ...WHERE ...) alias1,

(SELECT attr2 AS name2 FROM ...WHERE ...) alias2 WHERE ...

... all big cities that belong to large countries:

SELECT city, country

FROM (SELECT name AS city, country AS code2

FROM city

WHERE population > 1000000

),

(SELECT name AS country, code

FROM country

WHERE area > 1000000

)

WHERE code = code2;

116

SUBQUERIES

• Subqueries of the form (SELECT ... FROM ... WHERE ...) that result in a single value
can be used anywhere where a value is required

SELECT function(..., (SELECT ... FROM ... WHERE ...))

FROM ... ;

SELECT ...

FROM ...

WHERE value1 = (SELECT ... FROM ... WHERE ...)

AND value2 < (SELECT ... FROM ... WHERE ...);

117

Subqueries in the WHERE clause

Non-Correlated subqueries

... the simple ones. Inner SFW independent from outer SFW

SELECT name

FROM country

WHERE area >

(SELECT area

FROM country

WHERE code=’D’);

SELECT name

FROM country

WHERE code IN

(SELECT country

FROM encompasses

WHERE continent=’Europe’);

Correlated subqueries

Inner SELECT ... FROM ... WHERE references value of outer SFW in its WHERE clause:

SELECT name

FROM city

WHERE population > 0.25 *

(SELECT population

FROM country

WHERE country.code = city.country);

SELECT name, continent

FROM country, encompasses enc

WHERE country.code=enc.country

AND area > 0.25 *

(SELECT area

FROM continent

WHERE name = enc.continent);

118

Subqueries: EXISTS

• EXISTS makes only sense with a correlated subquery:

SELECT name

FROM country

WHERE EXISTS (SELECT *

FROM city

WHERE country.code = city.country

AND population > 1000000);

algebra equivalent: semijoin.

• NOT EXISTS can be used to express things that otherwise cannot be expressed by SFW:

SELECT name

FROM country

WHERE NOT EXISTS (SELECT *

FROM city

WHERE country.code = city.country

AND population > 1000000);

Alternative: use (SFW) MINUS (SFW)

119

SET OPERATIONS : UNION, INTERSECT, MINUS/EXCEPT

(SELECT name FROM city) INTERSECT (SELECT name FROM country)

Often applied with renaming:

SELECT *

FROM (SELECT river AS name, country, province FROM geo river)

UNION (SELECT lake AS name, country, province FROM geo lake)

UNION (SELECT sea AS name, country, province FROM geo sea)

WHERE country = ’D’

120

GROUPING AND AGGREGATION

General Structure of SQL Queries

SELECT A1, . . . , An list of attributes
FROM R1, . . . , Rm list of relations
WHERE F condition(s)
GROUP BY B1, . . . , Bk list of grouping attributes
HAVING G condition on groups, same syntax as WHERE clause
ORDER BY H sort order

Aggregation: SUM, AVG, MIN, MAX

Applied to a whole relation or to each group (GROUP BY):

SELECT MAX(population) FROM country

SELECT country, SUM(population), MAX(population)

FROM City

GROUP BY Country

HAVING SUM(population) > 10000000;

SELECT contains only aggregates, and attributes that are the same inside each group.

121

CONSTRUCTING QUERIES

For each problem there are multiple possible equivalent queries in SQL (cf. Example 3.15).
The choice is mainly a matter of personal taste.

• analyze the problem “systematically”:

– collect all relations (in the FROM clause) that are needed

– generate a suitable conjunctive WHERE clause

⇒ leads to a single “broad” SFW query
(cf. conjunctive queries, relational calculus)

• analyze the problem “top-down”:

– take the relations that directly contribute to the result in the (outer) FROM clause

– do all further work in correlated subquery/-queries in the WHERE clause

⇒ leads to a “main” part and nested subproblems

• decomposition of the problem into subproblems:

– subproblems are solved by nested SFW queries that are combined in the FROM
clause of a surrounding query

122

Comparison

SQL:

SELECT A1, . . . , An FROM R1,...,Rm WHERE F

• equivalent expression in the relational algebra:

π[A1, . . . , An](σ[F](r1 × . . . × rm))

• Algorithm (nested-loop):
FOR each tuple t1 in relation R1 DO

FOR each tuple t2 in relation R2 DO
:

FOR each tuple tn in relation Rn DO
IF tuples t1, . . . , tn satisfy the WHERE-clause THEN

evaluate the SELECT clause and generate the result tuple (projection).

Note: the tuple variables can also be introduced in SQL explicitly as alias variables:

SELECT A1, . . . , An FROM R1 t1,...,Rm tm WHERE F

(then optionally using ti.attr in SELECT and WHERE)

123

Comparison: Subqueries

• Subqueries in the FROM-clause (cf. Slide 116): joined subtrees in the algebra

SELECT city, country.name

FROM (SELECT name AS city,

country AS code2

FROM city

WHERE population > 1000000

),

(SELECT name AS country, code

FROM country

WHERE area > 1000000

)

WHERE code = code2;

π[city, country]

σ[code=code2]

×

ρ[name→ city, country→ code2]

π[name, country]

σ[population>1000000]

city

ρ[name→ country]

π[name, code]

σ[area>1000000]

country

124

Comparison: Subqueries in the WHERE clause

• WHERE ... IN uncorrelated-subquery (cf. Slide 118):
Natural semijoin outer tree with the subquery tree;

SELECT name

FROM country

WHERE code IN

(SELECT country

FROM encompasses

WHERE continent=’Europe’);

π[name]

�<

country ρ[country→ code]

π[country]

σ[continent=’Europe’]

encompasses

Note that the natural semijoin serves as an equi-selection where all tuples from the outer
expression qualify that match an element of the result of the inner expression.

125

Comparison: Subqueries

• WHERE value op uncorrelated-subquery:
(cf. Slide 118):
join of outer expression with subquery, selection, projection to outer attributes

SELECT name

FROM country

WHERE area >

(SELECT area

FROM country

WHERE code=’D’);

π[name]

./[area > germanyArea]

country ρ[area→ germanyArea]

π[area]

σ[code=’D’]

country
Note: the table that results from the join has the format (name, code, area, population,
. . . , germanyArea).

126

Comparison: Correlated Subqueries

• WHERE value op correlated-subquery:

– tree1: outer expression

– tree2: subquery, uncorrelated

– natural join/semijoin of both trees contains the correlating condition

– afterwards: WHERE condition

SELECT name, continent

FROM country, encompasses enc

WHERE country.code=enc.country

AND area > 0.25 *

(SELECT area

FROM continent

WHERE name=enc.continent);

π[name,continent]

σ[area > 0.25 * cont.area]

./[enc.cont=cont.name]

./[country.code=enc.country]

country encompasses

continent

• equivalent with semijoin: �< [enc.cont=cont.name ∧ area > 0.25 * cont.area]

127

Comparison: Correlated Subqueries

... comment to previous slide:

• although the tree expression looks less target-oriented than the SQL correlated subquery,
it does the same:

• instead of iterating over the tuples of the outer SQL expression and evaluating the inner
one for each of the tuples,

• the results of the inner expression are “precomputed” and iteration over the outer result
just fetches the corresponding one.

• effectiveness depends on the situation:

– how many of the results of the subquery are actually needed (worst case: no tuple
survives the outer local WHERE clause).

– are there results of the subquery that are needed several times.

database systems are often able to internally choose the most effective solution
(schema-based and statistics-based)
... see next section.

128

Comparison: EXISTS-Subqueries

• WHERE EXISTS: similar to above:
correlated subquery, no additional condition after natural semijoin

• SELECT ... FROM X,Y,Z WHERE NOT EXISTS (SFW):

SELECT ...

FROM ((SELECT * FROM X,Y,Z) MINUS

(SELECT X,Y,Z WHERE EXISTS (SFW)))

Results

• all queries (without NOT-operator) including subqueries without grouping/aggregation can
be translated into SPJR-trees (selection, projection, join, renaming)

• they can even be flattened into a single broad cartesian product, followed by a selection
and a projection.

129

Comparison: the differences between Algebra and SQL

• The relational algebra has no notion of grouping and aggregate functions

• SQL has no clause that corresponds to relational division

Example 3.17
Consider again Example 3.10 (Slide 91).

The corresponding SQL formulation that implements division corresponds to the textual

“all countries that occur in π[country](enc), with the additional condition that they occur in enc

together with each of the continent values that occur in cts”,

or equivalent

“all countries c in π[country](enc) such that there is no continent value cont in cts such that c

does not occur together with cont in enc”: 2

130

Example 3.17 (Continued)
“all countries c in π[country](enc) such that there is no continent value cont in cts such that c

does not occur together with cont in enc”:

SELECT enc1.country

FROM enc enc1 — consider enc1.country=“R” and enc1.country=“D”

WHERE NOT EXISTS — correlated subquery

((SELECT ct

FROM cts)

— always
“Europe”

“Asia”

MINUS

(SELECT ct

FROM enc enc2

WHERE enc1.country = enc2.country

for “R”:

“R” “Asia”

“R” “Europe”

for “D”:

“D” “Europe”

)

) — remains: for “R”: nothing ; “R” belongs to the result

for D: “Asia” ; “D” does not belong to the result

131

Orthogonality

Full orthogonality means that an expression that results in a relation is allowed everywhere,
where an input relation is allowed

• subqueries in the FROM clause

• subqueries in the WHERE clause

• subqueries in the SELECT clause (returning a single value)

• combinations of set operations

But:

• Syntax of aggregation functions is not fully orthogonal:
Not allowed: SUM(SELECT ...)

SELECT SUM(pop biggest)

FROM (SELECT country, MAX(population) AS pop biggest

FROM City

GROUP BY country);

• The language OQL (Object Query Language) uses similar constructs and is fully
orthogonal.

132

3.3 Efficient Algebraic Query Evaluation

Queries are formulated declaratively (e.g., SQL or algebra trees), actually built over a small
set of basic operations (cf. the definition of the relational algebra).

Semantical optimization: consider integrity constraints in the database.

Example: population > 0, thus, a query that asks for negative values can be answered
without explicit computation.

• not always obvious

• general case: first-order theorem proving.

• special cases: [see lecture on Database Theory]

Logical/algebraic optimization: search for an equivalent algebra expression that performs
better:

• size of intermediate results,

• implementation of operators as algorithms,

• presence of indexes and order.

133

ALGEBRAIC OPTIMIZATION

The operator tree of an algebra expression provides a base for several optimization strategies:

• reusing intermediate results

• equivalent restructuring of the operator tree

• “shortcuts” by melting several operators into one
(e.g., join + equality predicate → equijoin)

• combination with actual situation: indexes, properties of data

Real-life databases implement this functionality.

• SQL: declarative specification of a query

• internal: algebra tree + optimizations

134

REUSING INTERMEDIATE RESULTS

• Multiply occurring subtrees can be reused
(directed acyclic graph (DAG) instead of algebra tree)

–

π[X] π[X]

./ ./

s r q ./

r s

–

π[X] π[X]

./

q

./

r s

135

Reusing intermediate results

∪

./ ./

r s t s t u

∪

./ ./

r ./ u

s t

136

OPTIMIZATION BY TREE RESTRUCTURING

• Equivalent transformation of the operator tree that represents an expression

• Based on the equivalences shown on Slide 107.

• minimize the size of intermediate results
(reject tuples/columns as early as possible during the computation)

• selections reduce the number of tuples

• projections reduce the size of tuples

• apply both as early as possible (i.e., before joins)

• different application order of joins

• semijoins instead of joins (in combination with implementation issues; see next section)

137

Push Selections Down

Assume r, s ∈ Rel(X̄), Ȳ ⊆ X̄.

σ[cond](π[Ȳ](r)) ≡ π[Ȳ](σ[cond](r))

(condition: cond does not use attributes from X̄ − Ȳ ,

otherwise left term is undefined)

σpop>1E6(π[name, pop](country)) ≡ π[name, pop](σpop>1E6(country))

σ[cond](r ∪ s) ≡ σ[cond](r) ∪ σ[cond](s)

σpop>1E6(π[name, pop](country) ∪ π[name, pop](city))

≡ σpop>1E6(π[name, pop](country)) ∪ σpop>1E6(π[name, pop](city))

σ[cond](ρ[N](r)) ≡ ρ[N](σ[cond′](r))

(where cond′ is obtained from cond by renaming according to N)

σ[cond](r ∩ s) ≡ σ[cond](r) ∩ σ[cond](s)

σ[cond](r − s) ≡ σ[cond](r) − σ[cond](s)

π : see comment above. Optimization uses only left-to-right.

138

Push Selections Down (Cont’d)

Assume r ∈ Rel(X̄), s ∈ Rel(Ȳ). Consider σ[cond](r ./ s).

Let cond = condX̄ ∧ condȲ ∧ condXY such that

• condX̄ is concerned only with attributes in X̄

• condȲ is concerned only with attributes in Ȳ

• condXY is concerned both with attributes in X̄ and in Ȳ .

Then,

σ[cond](r ./ s) ≡ σ[condXY](σ[condX̄](r) ./ σ[condȲ](s))

Example 3.18
Names of all countries that have been founded earlier than 1970, their capital has more than
1.000.000 inhabitants, and more than half of the inhabitants live in the capital. 2

139

Example 3.18 (Continued)
(Solution)

π[Name](σ[establ < “01 01 1970” ∧ city.pop > 1.000.000 ∧ country.pop < 2 · city.pop]

(country ×country.(capital,prov,code)=city(name,prov,country) city)

≡ π[Name](σ[country.pop < 2 · city.pop]

(σ[establ < “01 01 1970”](country)

×country.(capital,prov,code)=city(name,prov,country)

σ[city.pop > 1.000.000](city)))
2

• Nevertheless, if cond is e.g. a complex mathematical calculation, it can be cheaper first to
reduce the number of tuples by ∩, −, or ./

⇒ data-dependent strategies (see later)

140

Push Projections Down

Assume r, s ∈ Rel(X̄), Ȳ ⊆ X̄.

Let cond = condX̄ ∧ condȲ such that

• condȲ is concerned only with attributes in Ȳ

• condX̄ is the remaining part of cond that is also concerned with attributes X̄ \ Y .

π[Ȳ](σ[cond](r)) ≡ σ[condȲ](π[Ȳ](σ[condX̄](r)))

π[Ȳ](ρ[N](r)) ≡ ρ[N](π[Ȳ ′](r))

(where Ȳ ′ is obtained from Ȳ by renaming according to N)

π[Ȳ](r ∪ s) ≡ π[Ȳ](r) ∪ π[Ȳ](s)

• Note that this does not hold for “∩” and “−”!

• advantages of pushing “σ” vs. “π” are data-dependent
Default: push σ lower.

Assume r ∈ Rel(X̄), s ∈ Rel(Ȳ).

π[Z̄](r ./ s) ≡ π[Z](π[X̄ ∩ ZY](r) ./ π[Ȳ ∩ ZX](s))

• complex interactions between reusing subexpressions and pushing selection/projection

141

Application Order of Joins

Minimize intermediate results:

SELECT organization.name, country.name

FROM organization, country, is_member

WHERE organization.abbrev = is_member.organization

AND country.code = is_member.country

Exploit selectivity of join:

• (org × country)
︸ ︷︷ ︸

200·200=40000

./ is member

︸ ︷︷ ︸

7000

• (org ./ is member)
︸ ︷︷ ︸

200,7000;7000

./ country

︸ ︷︷ ︸

7000

If indexes on country.code and organization.abbrev are available:

• loop over is member

• extend each tuple with matching country and organization by using the indexes.

142

Example/Exercise

Consider the equivalent (to the previous example) query:

SELECT organization.name, country.name

FROM organization, country,

WHERE EXISTS

(SELECT *

FROM is_member

WHERE organization.abbrev = is_member.organization

AND country.code = is_member.country)

• suggests the non-optimal evaluation!

• transform the above query into algebra

• ... yields the same “broad” join as before ...

• ... and leads to the optimized join ordering.

143

OPERATOR EVALUATION BY PIPELINING

• above, each algebra operator has been considered separately

• if a query consists of several operators, the materialization of intermediate results should
be avoided

• Pipelining denotes the immediate propagation of tuples to subsequent operators

Example 3.19
• σ[A = 5 ∧ B > 6]R:

Assume an index that supports the condition A = 5.

– without pipelining: compute σ[A = 5]R using the index, obtain R′. Then, compute
σ[B > 6]R′.

– with pipelining: compute σ[A = 5]R using the index, and check on-the fly each
qualifying tuple against σ[B > 6]. 2

• Unary (i.e., selection and projection) operations can always be pipelined with the next
lower binary operation (e.g., join)

144

Example 3.19 (Continued)
• σ[cond](R ./ S):

– without pipelining: compute R ./ S, obtain RS, then compute σ[cond](RS).

– with pipelining: during computing (R ./ S), each tuple is immediately checked whether
it satisfies cond.

• (R ./ S) ./ T :

– without pipelining: compute R ./ S, obtain RS, then compute RS ./ T .

– with pipelining: during computing (R ./ S), each tuple is immediately propagated to
one of the described join algorithms for computing RS ./ T . 2

Most database systems combine matrialization of intermediate results, iterator-based
implementation of algebra operators, and pipelining.

145

