Chapter 3 Relational Database Languages: Relational Algebra

We first consider only query languages.
Relational Algebra: Queries are expressions over operators and relation names.
Relational Calculus: Queries are special formulas of first-order logic with free variables.
SQL: Combination from algebra and calculus and additional constructs. Widely used DML for relational databases.

QBE: Graphical query language.
Deductive Databases: Queries are logical rules.

Relational Database Languages: Comparison and Outlook

Remark:

- Relational Algebra and (safe) Relational Calculus have the same expressive power. For every expression of the algebra there is an equivalent expression in the calculus, and vice versa.
- A query language is called relationally complete, if it is (at least) as expressive as the relational algebra.
- These languages are compromises between efficiency and expressive power; they are not computationally complete (i.e., they cannot simulate a Turing Machine).
- They can be embedded into host languages (e.g. C++ or Java) or extended (PL/SQL), resulting in full computational completeness.
- Deductive Databases (Datalog) are more expressive than relational algebra and calculus.

3.1 Relational Algebra: Computations over Relations

Operations on Tuples - Overview Slide
Let $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X}=\left\{A_{1}, \ldots, A_{k}\right\}$.
(Formal definition of μ see Slide 59)

- For $\emptyset \subset \bar{Y} \subseteq \bar{X}$, the expression $\mu[\bar{Y}]$ denotes the projection of μ to \bar{Y}.

Result: $\mu[\bar{Y}] \in \operatorname{Tup}(\bar{Y})$ where $\mu[\bar{Y}](A)=\mu(A), A \in \bar{Y}$.

- A selection condition α (wrt. \bar{X}) is an expression of the form $A \theta B$ or $A \theta c$, or $c \theta A$ where $A, B \in \bar{X}, \operatorname{dom}(A)=\operatorname{dom}(B), c \in \operatorname{dom}(A)$, and θ is a comparison operator on that domain like e.g. $\{=, \neq, \leq,<, \geq,>\}$.
A tuple $\mu \in \operatorname{Tup}(\bar{X})$ satisfies a selection condition α, if - according to $\alpha-\mu(A) \theta \mu(B)$ or $\mu(A) \theta c$, or $c \theta \mu(A)$ holds.
These (atomic) selection conditions can be combined to formulas by using \wedge, \vee, \neg, and (,).
- For $\bar{Y}=\left\{B_{1}, \ldots, B_{k}\right\}$, the expression $\mu\left[A_{1} \rightarrow B_{1}, \ldots, A_{k} \rightarrow B_{k}\right]$ denotes the renaming of μ.
Result: $\mu\left[\ldots, A_{i} \rightarrow B_{i}, \ldots\right] \in \operatorname{Tup}(\bar{Y})$ where $\mu\left[\ldots, A_{i} \rightarrow B_{i}, \ldots\right]\left(B_{i}\right)=\mu\left(A_{i}\right)$ for $1 \leq i \leq k$.

Let $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X}=\left\{A_{1}, \ldots, A_{k}\right\}$.

Projection

For $\emptyset \subset \bar{Y} \subseteq \bar{X}$, the expression $\mu[\bar{Y}]$ denotes the projection of μ to \bar{Y}.
Result: $\mu[\bar{Y}] \in \operatorname{Tup}(\bar{Y})$ where $\mu[\bar{Y}](A)=\mu(A), A \in \bar{Y}$.
projection to a given set of attributes

Example 3.1

Consider the relation schema $R(\bar{X})=$ continent(Name, Area) : $\bar{X}=[$ Name, Area $]$
and the tuple $\mu=$ "Asia", 4.50953e +07 .
formally: $\mu($ Name $)=$ "Asia", $\mu($ Area $)=4.5 E 7$
projection attributes: Let $\bar{Y}=[$ Name $]$
Result: $\mu[$ Name $]=$ "Asia"

Again, $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X}=\left\{A_{1}, \ldots, A_{k}\right\}$.

Selection

A selection condition α (wrt. \bar{X}) is an expression of the form $A \theta B$ or $A \theta c$, or $c \theta A$ where $A, B \in \bar{X}, \operatorname{dom}(A)=\operatorname{dom}(B), c \in \operatorname{dom}(A)$, and θ is a comparison operator on that domain like e.g. $\{=, \neq, \leq,<, \geq,>\}$.
A tuple $\mu \in \operatorname{Tup}(\bar{X})$ satisfies a selection condition α, if - according to $\alpha-\mu[A] \theta \mu[B]$ or $\mu[A] \theta c$, or $c \theta \mu[A]$ holds.
yes/no-selection of tuples (without changing the tuple)

Example 3.2

Consider again the relation schema $R(\bar{X})=\operatorname{continent}($ Name, Area) : $\bar{X}=[$ Name, Area $]$.
Selection condition: Area $>10.000 .000$.
Consider again the tuple $\mu=$ "Asia", 4.50953e+07.
formally: $\mu($ Name $)=$ "Asia", $\mu($ Area $)=4.5 E 7$
check: $\mu($ Area $)>10.000 .000$
Result: yes.
These (atomic) selection conditions can be combined to formulas by using \wedge, \vee, \neg, and (,).

Let $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X}=\left\{A_{1}, \ldots, A_{k}\right\}$.

Renaming

For $\bar{Y}=\left\{B_{1}, \ldots, B_{k}\right\}$, the expression $\mu\left[A_{1} \rightarrow B_{1}, \ldots, A_{k} \rightarrow B_{k}\right]$ denotes the renaming of μ.
Result: $\mu\left[\ldots, A_{i} \rightarrow B_{i}, \ldots\right] \in \operatorname{Tup}(\bar{Y})$ where $\mu\left[\ldots, A_{i} \rightarrow B_{i}, \ldots\right]\left(B_{i}\right)=\mu\left(A_{i}\right)$ for $1 \leq i \leq k$. renaming of attributes (without changing the tuple)

Example 3.3

Consider (for a tuple of the table $R(\bar{X})=$ encompasses(Country, Continent, Percent)):
$\bar{X}=[$ Country, Continent, Percent $]$.
Consider the tuple $\mu=$ " R ", "Asia", 80 .
formally: $\mu($ Country $)=$ " R ", $\mu($ Continent $)=$ "Asia", $\mu($ Percent $)=80$
Renaming: $\bar{Y}=[$ Code, Name, Percent $]$
Result: a new tuple
$\mu[$ Country \rightarrow Code, Continent \rightarrow Name, Percent \rightarrow Percent $]=$ "R", "Asia", 80 that now fits into the schema new_encompasses(Code, Name, Percent).

The usefulness of renaming will become clear later ...

Expressions in the Relational Algebra

What is an algebra?

- An algebra consists of a "domain" (i.e., a set of "things"), and a set of operators.
- Operators map elements of the domain to other elements of the domain.
- Each of the operators has a "semantics", that is, a definition how the result of applying it to some input should look like.
- Algebra expressions are built over basic constants and operators (inductive definition).

Relational Algebra

- The "domain" consists of all relations (over arbitrary sets of attributes).
- The operators are then used for combining relations, and for describing computations e.g., in SQL.
- Relational algebra expressions are defined inductively over relations and operators.
- Relational algebra expressions define queries against a relational database.

Inductive Definition of Expressions

Atomic Expressions

- For an arbitrary attribute A and a constant $a \in \operatorname{dom}(A)$, the constant relation $A:\{a\}$ is an algebra expression.
Format: [A]
Result relation: $\{a\}$

$\mathbf{A}:\{\mathbf{a}\}$
\mathbf{A}
\mathbf{a}

- Given a database schema $\mathbf{R}=\left\{R_{1}\left(\bar{X}_{1}\right), \ldots, R_{n}\left(\bar{X}_{n}\right)\right\}$, every relation name R_{i} is an algebra expression.
Format of $R_{i}: \bar{X}_{i}$
Result relation (wrt. a given database state \mathcal{S}): the relation $\mathcal{S}\left(R_{i}\right)$ that is currently stored in the database.

Structural Induction: Applying an Operator

- takes one or more input relations $i n_{1}, i n_{2}, \ldots$
- produces a result relation out:
- out has a format, depends on the formats of the input relations.
- out is a relation, i.e., it contains some tuples, depends on the content of the input relations.

Base Operators

Let \bar{X}, \bar{Y} formats and $r \in \operatorname{Rel}(\bar{X})$ and $s \in \operatorname{Rel}(\bar{Y})$ relations over \bar{X} and \bar{Y}.

Union

Assume $r, s \in \operatorname{Rel}(\bar{X})$.
Result format of $r \cup s: \bar{X}$
Result relation: $r \cup s=\{\mu \in \operatorname{Tup}(\bar{X}) \mid \mu \in r$ or $\mu \in s\}$.

$$
r=\begin{array}{lll}
A & B & C \\
a & b & c \\
d & a & f \\
c & b & d
\end{array} \quad s=\begin{array}{rll}
A & B & C \\
b & g & a \\
d & a & f
\end{array} \quad r \cup s=\begin{array}{rcc}
A & B & C \\
\hline a & b & c \\
d & a & f \\
c & b & d \\
b & g & a
\end{array}
$$

Set Difference

Assume $r, s \in \operatorname{Rel}(\bar{X})$.
Result format of $r \backslash s: \bar{X}$
Result relation: $r \backslash s=\{\mu \in r \mid \mu \notin s\}$.

$$
r=\begin{array}{ccc}
A & B & C \\
\hline a & b & c \\
d & a & f \\
c & b & d
\end{array}
$$

$$
s=\begin{array}{lll}
A & B & C \\
\hline b & g & a \\
d & a & f
\end{array}
$$

$$
r \backslash s=\begin{array}{ccc}
A & B & C \\
\hline a & b & c \\
c & b & d
\end{array}
$$

Projection

Assume $r \in \operatorname{Rel}(\bar{X})$ and $\bar{Y} \subseteq \bar{X}$.
Result format of $\pi[\bar{Y}](r): \bar{Y}$
Result relation: $\pi[\bar{Y}](r)=\{\mu[\bar{Y}] \mid \mu \in r\}$.

Example 3.4

Continent	
Name	Area
Europe	9562489.6
Africa	$3.02547 e+07$
Asia	$4.50953 e+07$
America	$3.9872 e+07$
Australia	8503474.56

Let $\bar{Y}=[$ Name $]$	
$\mu_{1}[$ Name $]$	$=$ "Europe"
$\mu_{2}[$ Name $]$	$=$ "Africa"
$\mu_{3}[$ Name $]$	$=$ "Asia"
$\mu_{4}[$ Name $]$	$=$ "America"
$\mu_{5}[$ Name $]$	$=$ "Australia"

$\pi[$ Name $]$ (Continent $)$
Name
Europe
Africa
Asia
America
Australia

Selection

Assume $r \in \operatorname{Rel}(\bar{X})$ and a selection condition α over \bar{X}.
Result format of $\sigma[\alpha](r): \bar{X}$
Result relation: $\sigma[\alpha](r)=\{\mu \in r \mid \mu$ satisfies $\alpha\}$.

Example 3.5

Continent		Let $\alpha=$ "Area $>10.000 .000$ "
Name	Area	
Europe	9562489.6	$\mu_{1}($ Area $)<10.000 .000$
Africa	$3.02547 e+07$	$\mu_{2}($ Area $)>10.000 .000$ yes
Asia	$4.50953 \mathrm{e}+07$	$\mu_{3}($ Area $)>10.000 .000$ yes
America	$3.9872 e+07$	$\mu_{4}($ Area $)>10.000 .000$ yes
Australia	8503474.56	$\mu_{5}($ Area $)<10.000 .000$ no

$\sigma[$ Area $>10 E 6]$ (Continent)	
Name	Area
Africa	$3.02547 e+07$
Asia	$4.50953 e+07$
America	$3.9872 e+07$

Renaming

Assume $r \in \operatorname{Rel}(\bar{X})$ with $X=\left[A_{1}, \ldots, A_{k}\right]$ and a renaming $\left[A_{1} \rightarrow B_{1}, \ldots, A_{k} \rightarrow B_{k}\right]$.
Result format of $\rho\left[A_{1} \rightarrow B_{1}, \ldots, A_{k} \rightarrow B_{k}\right](r):\left[B_{1}, \ldots, B_{k}\right]$
Result relation: $\rho\left[A_{1} \rightarrow B_{1}, \ldots, A_{k} \rightarrow B_{k}\right](r)=\left\{\mu\left[A_{1} \rightarrow B_{1}, \ldots, A_{k} \rightarrow B_{k}\right] \mid \mu \in r\right\}$.

Example 3.6

Consider the renaming of the table encompasses(Country, Continent, Percent):
$\bar{X}=[$ Country, Continent, Percent $]$
Renaming: $\bar{Y}=[$ Code, Name, Percent $]$

$\rho[$ Country \rightarrow Code, Continent \rightarrow Name, Percent \rightarrow Percent $]$ (encompasses)		
Code	Name	Percent
R	Europe	20
R	Asia	80
D	Europe	100
\vdots	\vdots	\vdots

(Natural) Join
Assume $r \in \operatorname{Rel}(\bar{X})$ and $s \in \operatorname{Rel}(\bar{Y})$ for arbitrary \bar{X}, \bar{Y}.
Convention: Instead of $\bar{X} \cup \bar{Y}$, we also write $\overline{X Y}$.
for two tuples $\mu_{1}=v_{1}, \ldots, v_{n}$ and $\mu_{2}=w_{1}, \ldots, w_{m}, \mu_{1} \mu_{2}:=v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{m}$.
Result format of $r \bowtie s: \overline{X Y}$.
Result relation: $r \bowtie s=\{\mu \in \operatorname{Tup}(\overline{X Y}) \mid \mu[\bar{X}] \in r$ and $\mu[\bar{Y}] \in s\}$.

Motivation

Simplest Case: $\bar{X} \cap \bar{Y}=\emptyset \Rightarrow$ Cartesian Product $r \bowtie s=r \times s$
$r \times s=\left\{\mu_{1} \mu_{2} \in \operatorname{Tup}(\overline{X Y}) \mid \mu_{1} \in r\right.$ and $\left.\mu_{2} \in s\right\}$.

$$
r=\begin{array}{ll}
A & B \\
1 & 2 \\
4 & 5
\end{array} \quad s=\begin{array}{cc}
C & D \\
a & b \\
c & d \\
e & f
\end{array} \quad r \bowtie s=\begin{array}{cccc}
A & B & C & D \\
\hline 1 & 2 & a & b \\
1 & 2 & c & d \\
1 & 2 & e & f \\
4 & 5 & a & b \\
4 & 5 & c & d \\
4 & 5 & e & f
\end{array}
$$

Example 3.7 (Cartesian Product of Continent and Encompasses)

Continent \times encompasses				
Name	Area	Continent	Country	Percent
Europe	9562489.6	Europe	Germany	100
Europe	9562489.6	Europe	Russia	20
Europe	9562489.6	Asia	Russia	80
Europe	9562489.6	$:$	$:$	$:$
Africa	$3.02547 e+07$	Europe	Germany	100
Africa	$3.02547 e+07$	Europe	Russia	20
Africa	$3.02547 e+07$	Asia	Russia	80
Africa	$3.02547 e+07$	$:$	$:$	$:$
Asia	$4.50953 e+07$	Europe	Germany	100
Asia	$4.50953 e+07$	Europe	Russia	20
Asia	$4.50953 e+07$	Asia	Russia	80
Asia	$4.50953 e+07$	$:$	$:$	$:$
$:$	$:$	$:$	$:$	$:$

Back to the Natural Join
General Case $\bar{X} \cap \bar{Y} \neq \emptyset$: shared attribute names constrain the result relation.
Again the definition: $r \bowtie s=\{\mu \in \operatorname{Tup}(\overline{X Y}) \mid \mu[\bar{X}] \in r$ and $\mu[\bar{Y}] \in s\}$.

Example 3.8

Consider encompasses(country,continent,percent) and is_member(organization,country,type):

encompasses			is_member		
Country	Continent	Percent	Organization	Country	Type
R	Europe	20	$E U$	D	member
R	Asia	80	UN	D	member
D	Europe	100	UN	R	member
:	:	:	:	:	:

encompasses $\bowtie i s _m e m b e r=\{\mu \in \operatorname{Tup}($ country, cont, perc,org, type $) \mid$
$\mu[$ country, cont, perc $] \in$ encompasses and $\mu[$ org, country,type $\left.] \in i s _m e m b e r\right\}$

Example 3.8 (Continued)

encompasses $\bowtie i s _m e m b e r=\{\mu \in \operatorname{Tup}($ country, cont, perc, org, type $) \mid$
$\mu[$ country, cont, $\operatorname{per} c] \in$ encompasses and $\mu[$ org, country,type $] \in$ is_member $\}$
start with $(R$, Europe, 20$) \in$ encompasses.
check which tuples in is_member match:
(UN, R, member) \in is_member matches:
result: (R, Europe, 20, U N, member) belongs to the result.
(some more matches ...)
continue with $(R$, Asia, 80$) \in$ encompasses.
$(U N, R$, member $) \in i s _m e m b e r ~ m a t c h e s: ~$
result: (R, Asia, $80, U N$, member) belongs to the result.
(some more matches ...)
continue with (D, Europe, 100$) \in$ encompasses.
$(E U, D$, member $) \in i s _m e m b e r ~ m a t c h e s: ~$
result: (D, Europe, 100, EU, member) belongs to the result.
(U N, D, member) $\in i s _m e m b e r ~ m a t c h e s: ~$
result: (D, Europe, $100, U N$, member) belongs to the result.
(some more matches ...)

Example 3.8 (Continued)

Result:

encompasses \times is_member				
Country	Continent	Percent	Organization	Type
R	Europe	20	UN	member
R	Europe	20	$:$	$:$
R	Asia	80	UN	member
R	Asia	80	$:$	$:$
D	Europe	100	UN	member
D	Europe	100	EU	member
D	Europe	100	$:$	$:$
$:$	$:$	$:$	$:$	$:$

Example 3.9 (and Exercise)

Consider the expression
continent $\bowtie \rho[$ Country \rightarrow Code, Continent \rightarrow Name, Percent \rightarrow Percent $]$ (encompasses)

Functionalities of the Join

- Combining relations
- Selective functionality: only matching tuples survive (consider joining cities and organizations on headquarters)

Derived Operators

Intersection

Assume $r, s \in \operatorname{Rel}(\bar{X})$.
Then, $r \cap s=\{\mu \in \operatorname{Tup}(\bar{X}) \mid \mu \in r$ and $\mu \in s\}$.

Theorem 3.1

Intersection can be expressed by Difference: $r \cap s=r \backslash(r \backslash s)$.

Assume $r \in \operatorname{Rel}(\bar{X})$ and $s \in \operatorname{Rel}(\bar{Y})$ such that $\bar{Y} \subsetneq \bar{X}$.
Result format of $r \div s: \bar{Z}=\bar{X} \backslash \bar{Y}$.
The result relation $r \div s$ is specified as "all \bar{Z}-values that occur in $\pi[\bar{Z}](r)$, with the additional condition that they occur in r together with each of the \bar{Y} values that occur in s ".

Formally,

$$
\begin{aligned}
& r \div s=\{\mu \in\operatorname{Tup}(\bar{Z}) \mid\{\mu\} \times s \subseteq r\} \equiv \pi[\bar{Z}](r) \backslash \pi[\bar{Z}]((\pi[\bar{Z}](r) \times s) \backslash r) \\
& \text { this implies that } \mu \in \pi[\bar{Z}](r)
\end{aligned}
$$

- Simple observation: $\pi[\bar{Z}](r) \supseteq r \div s$.

This constrains the set of possible results.

Example 3.10 (Relational Division)

Compute all countries that belong both to Europe and to Asia:

enc		cts
country	continent	continent
R	Asia	Asia
R	Europe	Europe
IND	Asia	
D	Europe	
TR	Asia	
TR	Europe	
$E T$	Africa	
ET	Asia	
CH	Europe	
:	:	

Compute enc \div cts:
$\bar{X}=[$ country, continent $], \bar{Y}=[$ continent $]$ Thus, $\bar{Z}=[$ country $]$.
Consider all values in π [country] (enc):
Start with " R " $\in \pi[$ country $](e n c)$:
for "Asia" \in cts: ("R","Asia") \in enc.
for "Europe" \in cts: ("R", "Europe") \in enc.
OK. " R " belongs to the result.
Continue with "IND" $\in \pi[$ country $]($ enc $)$:
for "Asia" \in cts: ("IND", "Asia") \in enc.
for "Europe" \in cts: ("IND", "Europe") $\notin e n c$.
"IND" does not belong to the result.
:
"TR" belongs to the result.
"ET" does not belong to the result.
" CH " does not belong to the result.

Example 3.10 (Cont(d))

Consider again Example 3.10 and the formal algebraic characterization of Division:

$$
r \div s=\{\mu \in \operatorname{Tup}(\bar{Z}) \mid\{\mu\} \times s \subseteq r\}=\pi[\bar{Z}](r) \backslash \pi[\bar{Z}]((\pi[\bar{Z}](r) \times s) \backslash r)
$$

1. $r=$ belongs_to, $s=$ continent,$Z=$ Country.
2. $(\pi[\bar{Z}](r) \times s)$ contains all tuples of countries with Europe and Asia, e.g., (Germany,Europe), (Germany,Asia), (Russia,Europe), (Russia,Asia)
3. $((\pi[\bar{Z}](r) \times s) \backslash r)$ contains all such tuples which are not "valid", e.g., (Germany,Asia).
4. projecting this to the countries yields all those countries where a non-valid tuple has been generated in (2), i.e., which do not belong both to Europe and Asia.
5. $\pi[\bar{Z}](r)$ is the list of all countries ...
6. ... subtracting those computed in (4) yields those that belong both to Europe and Asia.

θ-Join

Combination of Cartesian Product and Selection:
Assume $r \in \operatorname{Rel}(\bar{X})$, and $s \in \operatorname{Rel}(\bar{Y})$, such that $\bar{X} \cap \bar{Y}=\emptyset$, and $A \theta B$ a selection condition.

```
r\bowtie \bowtieA0B
```


Equi-Join

θ-join that uses the " $=$ "-predicate.

Example 3.11 (and Exercise)

Consider again Example 3.7:
Continent \times encompasses contained tuples that did not really make sense.
(Continent \times encompasses $)_{\text {continent }=\text { name }}$ would be more useful.
Furthermore, consider
$\pi[$ continent, area, code, percent $]\left((\text { Continent } \times \text { encompasses })_{\text {continent }=\text { name }}\right):$

- removes the - now redundant - "name" column,
- is equivalent to the natural join $(\rho[$ name \rightarrow continent $]$ continent $) \bowtie$ encompasses.

Several Extensions of the Join

- Join is the operator for combining relations

Example 3.12

Consider a completely different database now for investigating joins.

- Persons work in divisions of a company
- Tools are assigned to the divisions

Works	
Person	Division
John	Production
Bill	Production
John	Research
Mary	Research
Sue	Sales

Tools	
Division	Tool
Production	hammer
Research	pen
Research	computer
Administration	typewriter

Example 3.12 (Continued)

Consider the join of both tables:

Works		Tools	
Person	Division	Division	Tool
John	Production	Production	hammer
Bill	Production	Research	pen
John	Research	Research	computer
Mary	Research	Admin.	typewriter
Sue	Sales		

Works \bowtie Tools		
Person	Division	Tool
John	Production	hammer
Bill	Production	hammer
John	Research	pen
John	Research	computer
Mary	Research	pen
Mary	Research	computer

- there is no tuple that describes Sue
- there is no tuple that describes the administration or sales division
- there is no tuple that shows that there is a typewriter

Semi-Join

Assume $r \in \operatorname{Rel}(\bar{X})$ and $s \in \operatorname{Rel}(\bar{Y})$ such that $\bar{X} \cap \bar{Y} \neq \emptyset$.
Result format: \bar{X}
Result relation: $r \bowtie s=\pi[\bar{X}](r \bowtie s)$
The semi-join $r \bowtie s$ does not return the join, but checks which tuples of r "survive" the join with s (i.e., "which find a counterpart in s wrt. the shared attributes"):

Example 3.13

Consider again Example 3.12:

Works \ltimes Tools	
Person	Division
John	Production
Bill	Production
John	Research
Mary	Research

Works \times Tools	
Division	Tool
Production	hammer
Research	pen
Research	computer

- Used for subqueries: (main query) \ltimes (subquery)
- Used for optimizing the evaluation of joins (often in combination with indexes).

Semi-Join: Example

Give the names of all countries where a city with at least 1.000 .000 inhabitants is located:

- Have a short look "inside" the subquery, but dont' actually use it:
- look only if there is a big city in this country.
- "if the country code is in the set of country codes ...":

Outer Join

Assume $r \in \operatorname{Rel}(\bar{X})$ and $s \in \operatorname{Rel}(\bar{Y})$.
Result format of $r \sqsupset \triangle \Perp \Sigma s: \overline{X Y}$
The outer join extends the "inner" join with all tuples that have no counterpart in the other relation (filled with null values):

Example 3.14 (Outer Join)

Consider again Example 3.12

Works $\exists \bowtie \bowtie$ Tools		
Person	Division	Tool
John	Production	hammer
Bill	Production	hammer
John	Research	pen
John	Research	computer
Mary	Research	pen
Mary	Research	computer
Sue	Sales	NULL
NULL	Admin	typewriter

Formally, the result relation is defined as follows:
$J=r \bowtie s$ — take the ("inner") join as base
$r_{0}=r \backslash \pi[\bar{X}](J)=r \backslash r \bowtie s-r$-tuples that "are missing"
$s_{0}=s \backslash \pi[\bar{Y}](J)=s \backslash r \rtimes s$ - s-tuples that "are missing"
$Y_{0}=\bar{Y} \backslash \bar{X}, X_{0}=\bar{X} \backslash \bar{Y}$
Let $\mu_{1} \in \operatorname{Tup}\left(Y_{0}\right), \mu_{2} \in \operatorname{Tup}\left(X_{0}\right)$ such that μ_{1}, μ_{2} consist only of null values

$$
r \beth \triangle \unrhd \subset s=J \cup\left(r_{0} \times\left\{\mu_{1}\right\}\right) \cup\left(s_{0} \times\left\{\mu_{2}\right\}\right) .
$$

Example 3.14 (Continued)

For the above example,
$J=W$ orks \bowtie Tools
$r_{0}=$ ["Sue","Sales"], $s_{0}=[$ "Admin","Typewriter"]
$Y_{0}=$ Tool, $X_{0}=$ Person

$\mu_{1}=$| Tool |
| :---: |
| null |$\mu_{2}=$| Person |
| :---: |
| null |

$r_{0} \times\left\{\mu_{1}\right\}=$| Person | Division | Tool |
| :---: | :---: | :---: |
| Sue | Sales | null |

$s_{0} \times\left\{\mu_{2}\right\}=$| Person | Division | Tool |
| :---: | :---: | :---: |
| null | Admin | Typewriter |

Generalized Natural Join

Assume $r_{i} \subseteq \operatorname{Tup}\left(\bar{X}_{i}\right)$.
Result format: $\cup_{i=1}^{n} \bar{X}_{i}$
Result relation: $\bowtie_{i=1}^{n} r_{i}=\left\{\mu \in \operatorname{Tup}\left(\cup_{i=1}^{n} \bar{X}_{i}\right) \mid \mu\left[\bar{X}_{i}\right] \in r_{i}\right\}$

Exercise 3.1

Prove that the natural join is commutative (which makes the generalized natural join well-defined):

$$
\begin{aligned}
\bowtie_{i=1}^{n} r_{i} & =\left(\left(\ldots\left(\left(r_{1} \bowtie r_{2}\right) \bowtie r_{3}\right) \bowtie \ldots\right) \bowtie r_{n}\right) \\
& =\left(r_{1} \bowtie\left(r_{2} \ldots\left(r_{n-1} \bowtie r_{n}\right) \ldots\right)\right)
\end{aligned}
$$

Expressions

- inductively defined: combining expressions by operators

Example 3.15

The names of all cities where (i) headquarters of an organization are located, and (ii) that are capitals of a member country of this organization.

As a tree:

is_Member
Country
Note that there are many equivalent expressions.

Expressions in the Relational Algebra as Queries

Let $\mathbf{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ a set of relation schemata of the form $R_{i}\left(\bar{X}_{i}\right)$. As already described, an database state to \mathbf{R} is a structure \mathcal{S} that maps every relation name R_{i} in \mathbf{R} to a relation $\mathcal{S}\left(R_{i}\right) \subseteq \operatorname{Tup}\left(\bar{X}_{i}\right)$

Every algebra expression Q defines a query against the state \mathcal{S} of the database:

- For given \mathbf{R}, Q is assigned a format Σ_{Q} (the format of the answer).
- For every database state $\mathcal{S}, \mathcal{S}(Q) \subseteq \operatorname{Tup}\left(\Sigma_{Q}\right)$ is a relation over Σ_{Q}, called the answer set for Q wrt. \mathcal{S}.
- $\mathcal{S}(Q)$ can be computed according to the inductive definition, starting with the innermost (atomic) subexpressions.
- Thus, the relational algebra has a functional semantics.

Summary: Inductive Definition of Expressions

Atomic Expressions

- For an arbitrary attribute A and a constant $a \in \operatorname{dom}(A)$, the constant relation $A:\{a\}$ is an algebra expression.
$\Sigma_{A:\{a\}}=[A]$ and $\mathcal{S}(A:\{a\})=A:\{a\}$
- Every relation name R is an algebra expression.
$\Sigma_{R}=\bar{X}$ and $\mathcal{S}(R)=\mathcal{S}(R)$.

Summary (CONT'D)

Compound Expressions

Assume algebra expressions Q_{1}, Q_{2} that define $\Sigma_{Q_{1}}, \Sigma_{Q_{2}}, \mathcal{S}\left(Q_{1}\right)$, and $\mathcal{S}\left(Q_{2}\right)$.
Compound algebraic expressions are now formed by the following rules (corresponding to the algebra operators):

Union

If $\Sigma_{Q_{1}}=\Sigma_{Q_{2}}$, then $Q=\left(Q_{1} \cup Q_{2}\right)$ is the union of Q_{1} and Q_{2}.
$\Sigma_{Q}=\Sigma_{Q_{1}}$ and $\mathcal{S}(Q)=\mathcal{S}\left(Q_{1}\right) \cup \mathcal{S}\left(Q_{2}\right)$.

Difference

If $\Sigma_{Q_{1}}=\Sigma_{Q_{2}}$, then $Q=\left(Q_{1} \backslash Q_{2}\right)$ is the difference of Q_{1} and Q_{2}.
$\Sigma_{Q}=\Sigma_{Q_{1}}$ and $\mathcal{S}(Q)=\mathcal{S}\left(Q_{1}\right) \backslash \mathcal{S}\left(Q_{2}\right)$.

Projection

For $\emptyset \neq \bar{Y} \subseteq \Sigma_{Q_{1}}, Q=\pi[\bar{Y}]\left(Q_{1}\right)$ is the projection of Q_{1} to the attributes in \bar{Y}.
$\Sigma_{Q}=\bar{Y}$ and $\mathcal{S}(Q)=\pi[\bar{Y}]\left(\mathcal{S}\left(Q_{1}\right)\right)$.

Inductive Definition of Expressions (Cont'd)

Selection

For a selection condition α over $\Sigma_{Q_{1}}, Q=\sigma[\alpha] Q_{1}$ is the selection from Q_{1} wrt. α.
$\Sigma_{Q}=\Sigma_{Q_{1}}$ and $\mathcal{S}(Q)=\sigma[\alpha]\left(\mathcal{S}\left(Q_{1}\right)\right)$.

Natural Join

$Q=\left(Q_{1} \bowtie Q_{2}\right)$ is the (natural) join of Q_{1} and Q_{2}.
$\Sigma_{Q}=\Sigma_{Q_{1}} \cup \Sigma_{Q_{2}}$ and $\mathcal{S}(Q)=\mathcal{S}\left(Q_{1}\right) \bowtie \mathcal{S}\left(Q_{2}\right)$.

Renaming

For $\Sigma_{Q_{1}}=\left\{A_{1}, \ldots, A_{k}\right\}$ and $\left\{B_{1}, \ldots, B_{k}\right\}$ a set of attributes, $\rho\left[A_{1} \rightarrow B_{1}, \ldots, A_{k} \rightarrow B_{k}\right] Q_{1}$ is the renaming of Q_{1}
$\Sigma_{Q}=\left\{B_{1}, \ldots, B_{k}\right\}$ and $\mathcal{S}(Q)=\left\{\mu\left[A_{1} \rightarrow B_{1}, \ldots, A_{k} \rightarrow B_{k}\right] \mid \mu \in \mathcal{S}\left(Q_{1}\right)\right\}$.

Example

Example 3.16

Professor(PNr, Name, Office), Course(CNr, Credits, CName) teach (PNr, CNr), examine(PNr, CNr)

- For each professor (name) determine the courses he gives (CName).

$$
\pi \text { [Name, CName] ((Professor } \bowtie \text { teach) } \bowtie \text { Course) }
$$

- For each professor (name) determine the courses (CName) that he teaches, but that he does not examine.

```
\pi[Name, CName]((
(\pi[Name, CNr](Professor }\bowtie\mathrm{ teach))
\
(\pi[Name, CNr](Professor }\bowtie\mathrm{ examine))
) }\bowtie\mathrm{ Course)
```

Simpler expression:

$$
\pi \text { [Name, CName] ((Professor } \bowtie \text { (teach } \backslash \text { examine)) } \bowtie \text { Course) }
$$

Equivalence of Expressions

Algebra expressions Q, Q^{\prime} are called equivalent, $Q \equiv Q^{\prime}$, if and only if for all structures \mathcal{S}, $\mathcal{S}(Q)=\mathcal{S}\left(Q^{\prime}\right)$.
Equivalence of expressions is the basis for algebraic optimization.
Let $\operatorname{attr}(\alpha)$ the set of attributes that occur in a selection condition α, and Q, Q_{1}, Q_{2}, \ldots expressions with formats X, X_{1}, \ldots..

Projections

- $\bar{Z}, \bar{Y} \subseteq \bar{X} \Rightarrow \pi[\bar{Z}](\pi[\bar{Y}](Q)) \equiv \pi[\bar{Z} \cap \bar{Y}](Q)$.
- $\bar{Z} \subseteq \bar{Y} \subseteq \bar{X} \Rightarrow \pi[\bar{Z}](\pi[\bar{Y}](Q)) \equiv \pi[\bar{Z}](Q)$.

Selections

- $\left.\sigma\left[\alpha_{1}\right]\left(\sigma\left[\alpha_{2}\right](Q)\right) \equiv \sigma\left[\alpha_{2}\right]\left(\sigma\left[\alpha_{1}\right](Q)\right) \equiv \sigma\left[\alpha_{1} \wedge \alpha_{2}\right](Q)\right)$.
- $\operatorname{attr}(\alpha) \subseteq \bar{Y} \subseteq \bar{X} \Rightarrow \pi[\bar{Y}](\sigma[\alpha](Q)) \equiv \sigma[\alpha](\pi[\bar{Y}](Q))$.

Joins

- $Q_{1} \bowtie Q_{2} \equiv Q_{2} \bowtie Q_{1}$.
- $\left(Q_{1} \bowtie Q_{2}\right) \bowtie Q_{3} \equiv Q_{1} \bowtie\left(Q_{2} \bowtie Q_{3}\right)$.

Equivalence of Expressions (Cont'd)

Joins and other Operations

- $\operatorname{attr}(\alpha) \subseteq \bar{X}_{1} \cap \bar{X}_{2} \Rightarrow \sigma[\alpha]\left(Q_{1} \bowtie Q_{2}\right) \equiv \sigma[\alpha]\left(Q_{1}\right) \bowtie \sigma[\alpha]\left(Q_{2}\right)$.
- $\operatorname{attr}(\alpha) \subseteq \bar{X}_{1}, \operatorname{attr}(\alpha) \cap \bar{X}_{2}=\emptyset \Rightarrow \sigma[\alpha]\left(Q_{1} \bowtie Q_{2}\right) \equiv \sigma[\alpha]\left(Q_{1}\right) \bowtie Q_{2}$.
- Assume $V \subseteq \overline{X_{1} X_{2}}$ and let $W=\bar{X}_{1} \cap \overline{V X_{2}}, U=\bar{X}_{2} \cap \overline{V X_{1}}$.

Then, $\pi[V]\left(Q_{1} \bowtie Q_{2}\right)=\pi[V]\left(\pi[W]\left(Q_{1}\right) \bowtie \pi[U]\left(Q_{2}\right)\right)$;

- $\bar{X}_{2}=\bar{X}_{3} \Rightarrow Q_{1} \bowtie\left(Q_{2}\right.$ op $\left.Q_{3}\right)=\left(Q_{1} \bowtie Q_{2}\right)$ op $\left(Q_{1} \bowtie Q_{3}\right)$ where op $\in\{\cup,-\}$.

Exercise 3.2

Prove some of the equalities (use the definitions given on the "Base Operators" slide).

Expressive Power of the Algebra

Transitive Closure

The transitive closure of a binary relation R, denoted by R^{*} is defined as follows:

$$
\begin{aligned}
R^{1} & =R \\
R^{n+1} & =\left\{(a, b) \mid \text { there is an } s \text { s.t. }(a, x) \in R^{n} \text { and }(x, b) \in R\right\} \\
R^{*} & =\bigcup_{1 . . \infty} R^{n}
\end{aligned}
$$

Examples:

- child (x, y) : child $^{*}=$ descendant
- flight connections
- flows_into of rivers in MONDIAL

Theorem 3.2

There is no expression of the relational algebra that computes the transitive closure of arbitrary binary relations r.

