
Chapter 5
Relational Databases and SQL:
Further Issues

• Data Definition Language (DDL):
schema generation

• Data Manipulation Language (DML):

– queries

– insertions, deletions, modifications

• Database behavior?

183

5.1 Database Schema

The database schema is the complete model of the structure of the application domain (here:
relational schema):

• relations

– names of attributes

– domains of attributes

– keys

• additional constraints

– value constraints

– referential integrity constraints

• storage issues of the physical schema: indexes, clustering etc. also belong to the schema

184

5.1.1 Schema Generation in SQL

Definition of Tables

Basic form: attribute names and domains

CREATE TABLE <table>

(<col> <datatype>,
...

<col> <datatype>)

domains: NUMBER, CHAR(n), VARCHAR2(n), DATE ...

CREATE TABLE City

(Name VARCHAR2(35),

Country VARCHAR2(4),

Province VARCHAR2(32),

Population NUMBER,

Longitude NUMBER,

Latitude NUMBER);

185

Integrity constraints

Simple constraints on individual attributes are given with the attribute definitions as “column
constraints”:

• domain definitions are already integrity constraints

• further constraints on individual attribute values
more detailed range restrictions:
City: CHECK (population > 0) or CHECK (longitude BETWEEN -180 AND 180)

• NULL values allowed? : Country: name NOT NULL

• Definition of key/uniqueness constraints:
Country: code PRIMARY KEY or name UNIQUE

186

Integrity constraints (Cont’d)

Constraints on several attributes are given separately as “table constraints”:

CREATE TABLE <table>

(<column definitions>,

<table-constraint>, ... ,<table-constraint>)

• table-constraints have a name

• must state which columns are concerned

CREATE TABLE City

(Name VARCHAR2(35),

Country VARCHAR2(4),

Province VARCHAR2(32),

Population NUMBER CONSTRAINT CityPop CHECK (Population >= 0),

Longitude NUMBER CONSTRAINT CityLong CHECK (Longitude BETWEEN -180 AND 180),

Latitude NUMBER CONSTRAINT CityLat CHECK (Latitude BETWEEN -90 AND 90),

CONSTRAINT CityKey PRIMARY KEY (Name, Country, Province));

... for details see “Practical Training SQL”.

187

Integrity constraints (Cont’d)

• up to now: only intra-table constraints

General Assertions

• inter-table constraints
e.g., “sum of inhabitants of provinces equals the population of the country”,
“sum of inhabitants of all cities of a country must be smaller the than population of the
country”

• SQL standard: CREATE ASSERTION

• not supported by most systems

• other solution: later

188

5.1.2 Referential Integrity Constraints

• important part of the schema

• relate foreign keys with their corresponding primary keys:

Continent Countryencompasses

name

Europe

code

R

percent

20

encompasses

Country Continent Percent

VARCHAR(4) VARCHAR(20) NUMBER

R Europe 20

R Asia 80

D Europe 100

.

encompasses.country → country.code and
encompasses.continent → continent.name

other examples:

city.country → country.code and
country.(capital,province,code) → city.(name,province,country)

189

Referential Integrity Constraints: SQL Syntax

• as column constraints (only single-column keys):
<column-name> <datatype> REFERENCES <table>(<column>)

• as table constraints (also compound keys):
CONSTRAINT <name> FOREIGN KEY (<column-list>)

REFERENCES <table>(<column-list>)

CREATE TABLE is member

(Country VARCHAR2(4) REFERENCES Country(Code),

Organization VARCHAR2(12) REFERENCES Organization(Abbreviation),

Type VARCHAR2(30));

CREATE TABLE City

(Name VARCHAR2(35),

Country VARCHAR2(4) REFERENCES Country(Code),

Province VARCHAR2(32),

Population NUMBER ..., Longitude NUMBER ..., Latitude NUMBER ...,

CONSTRAINT CityKey PRIMARY KEY (Name, Country, Province),

FOREIGN KEY (Country,Province) REFERENCES Province (Country,Name));

190

5.1.3 Virtual Tables: Views

Views are tables that are not materialized, but defined by a query against the database:

CREATE VIEW <name> AS <query>

CREATE OR REPLACE VIEW symm borders AS

SELECT * FROM borders

UNION

SELECT Country2, Country1, Length FROM borders;

SELECT country2

FROM symm borders

WHERE country1=’D’;

• classical views: the content of a view is always computed when it is queried.

• Materialized Views: view is materialized and automatically maintained
→ view maintenance problem: when a base table changes, what modifications have to be
applied to which views?

191

5.2 SQL: Data Manipulation Language

... everything is based on the structure of the SELECT-FROM-WHERE clause:

• Deletions:

DELETE FROM ... WHERE ...

• Updates:

UPDATE <table>

SET <attribute> = <value>, ..., <attribute> = <value>

WHERE ...

value can be a subquery (also a correlated one)

• Insertions:

INSERT INTO <table> VALUES (...)

INSERT INTO <table> (SELECT ... FROM ... WHERE ...)

192

5.3 Beyond Relational Completeness

• The Relational Algebra and SQL are only relationally complete.

• can e.g. not compute the transitive closure of a relation

• applications require a more complex behavior:

– SQL als the “core query language”

– with something around it ...

193

MAKING SQL TURING-COMPLETE

• embedded SQL in C/Pascal:

EXEC SQL SELECT ... FROM ... WHERE ...

embedded into Java: JDBC (Java Database Connectivity)

• SQL-92: Procedural Extensions to SQL:

– CREATE procedures and functions as compiled things inside the database

– standardized concepts, but product-specific syntax

– basic programming constructs of a “typical” Turing-complete language:
Variables, BEGIN ... END, IF ... THEN ... ELSIF ..., WHILE ... LOOP ..., FOR ... LOOP

– SQL can be used inside PL/SQL statements

194

“I MPEDANCE MISMATCH” BETWEEN DB AND PROGRAMMING LANGUAGES

(cf. Slide 3)

Set-oriented (relations) vs. value-oriented (variables)

• how to handle the result of a query in C/Pascal/Java?

Iterators (common programming pattern for all kinds of collections)

• explicit:

– new/init(<query>)/open()

– first(), next(), isempty()

– fetch() (into a record/tuple variable)

• implicit (PL/SQL’s “Cursor FOR LOOP”):

FOR <record-variable> IN <query>

LOOP

do something with <record-variable>

END LOOP;

... for details see “Practical Training SQL”.

195

5.4 Integrity Maintenance

• if a tuple is changed/inserted/deleted it is immediately checked whether all constraints in
the current database state are satisfied afterwards.
Otherwise the operation is rejected.

• if a constraint is defined/enabled, it is immediately checked whether it is satisfied by the
current database state.
Otherwise the operation is rejected.

Any further possibilities?

196

Integrity Maintenance (Cont’d): referential integrity

Consider again country - organization - is member:

is member.organization → organization.abbrev
is member.country → country.code

• deletion of a membership entry: no problem

• deletion of a country: any membership entries for it are now “dangling”

⇒ remove them!

Referential Actions

FOREIGN KEY is member(country) REFERENCES country(code) ON DELETE CASCADE

• ON DELETE CASCADE: delete referencing tuple

• ON DELETE RESTRICT: referenced tuple cannot be deleted

• ON DELETE NO ACTION: referenced tuple can be deleted if the same transaction also
deletes the referencing tuple

• ON DELETE SET NULL: foreign key of referencing tuple is set to NULL

• ON DELETE SET DEFAULT: foreign key of referencing tuple is set to a default value

• same for ON UPDATE

197

Referential Actions

Country

Name Code Capital Province

Germany D Berlin Berlin

United States USA Washington Distr. Columbia

.

City

Name Country Province

Berlin D Berlin

Washington USA Distr. Columbia

.

1. DELETE FROM City

WHERE Name=’Berlin’;

2. DELETE FROM Country

WHERE Name=’Germany’;

3. UPDATE Country

SET code=’DE’

WHERE code=’D’;

CASCADE

NO ACTION

198

Referential Actions: Problems

Country

Name Code Capital Province

Germany D Berlin Berlin

United States US Washington Distr.Col.

.
Province

Name Country Capital

Berlin D Berlin

Distr.Col. US Washington

.
City

Name Country Province

Berlin D B

Washington USA Distr.Col.

.
DELETE FROM Country

WHERE Code=’D’

SET NULL

CASCADE

CASCADE

... ambiguous semantics!

see http://dbis.informatik.uni-goettingen.de/RefInt.

199

... active behavior/reaction on events!

5.5 Active Databases/Triggers

• reacting on an event

– external event/signal

– internal event: modification/insertion/deletion

– internal event: time

• if a condition is satisfied

• then do something/execute an action

ECA: Event-Condition-Action rules

200

ECA-Rules

Consider database updates only: one or more tuples of a table are changed.

• Granularity:

– execute action once for “all updates together” (e.g., afterwards, update a sum)

– execute action for each changed tuple (e.g. cascading update)

• Timepoint:

– after execution of original update

– before execution of original update

– instead of original update

• Actions:

– can read the before- and after value of the updated tuple

– read and write other tables

201

Triggers

The SQL standard provides “Triggers” for implementation of ECA rules:

CREATE TRIGGER

• specify event:
ON {DELETE | UPDATE | INSERT} ON <table>

• specify condition WHEN <condition>

• specify granularity FOR EACH STATEMENT | ROW

• specify action

Actions are programmed using the above-mentioned procedural extensions to SQL.

Applications

• implement application-specific business rules

• integrity maintenance

• monitoring of assertions

... for details see “Practical Training SQL”.

202

