
Semantic Web 4

2. Unit: SPARQL Formal Semantics

Exercise 2.1 (SPARQL Formal Semantics) Consider the SPARQL Formal Semantics.

a) Define a “null-tolerant join” for the relational algebra that acts like the ⊲⊳ of the SPARQL
algebra.

b) Which SQL construct is similar to the “\” operator in the SPARQL algebra?

c) In the SPARQL algebra, OPT is expressed via left outer join, which is defined via “\” (while a
corresponding MINUS does not exist in the SPARQL syntax).
Such a MINUS (cf. part (b) of this exercise) provides a more intuitive idea of negation than “!
bound(x)”. Give a general pattern how to express (P1 MINUS P2) in SPARQL 1.0 syntax.

d) Recall the definition of ⊐⊲⊳ in the relational algebra (DB lecture) and define SPARQL’s ⊐⊲⊳ in
a similar way.

(Parts of the solution are taken from [PAG06]: Jorge Pérez, Marcelo Arenas, Claudio Gutierrez:
Semantics and Complexity of SPARQL. International Semantic Web Conference 2006: 30-43, and
from [AG08]: Renzo Angles and Claudio Gutierrez: The Expressive Power of SPARQL. Interna-
tional Semantic Web Conference 2008: 114-129; use http://www.dblp.org)

a) Consider R(A,B,C) and S(A,B,D) where A is non-null, and B can contain nulls. Then, the
null-tolerant join ⊲⊳null can be defined by the following steps:

1) cartesian product of both relations, and immediately evaluating the condition

R.A = S.A ∧ (R.B = S.B ∨ (R.B is null) ∨ (S.B is null)) .

The result has the format [R.A, S.A,R.B, S.B,C,D].

– R.A has always the same (non-null) value as S.A.

– R.B and S.B can contain the same non-null-value, but also any of them can contain a
null value, while the other is also null, or contains a non-null value.

2) apply a projection that removes S.A.

3) For handling B, a new basic operator has to be defined (similar to SQL’s binary “coalesce”
function: if the first argument is null, take the second one):

coalesce : ANY ×ANY, (v1, v2) 7→ v1 if v1 is not null,
(null, v) 7→ v

(note that coalesce(R.B, S.B) = coalesce(S.B,R.B) after evaluating the condition in Step
(1)).

The algebra expression is then

π[R.A,B ← coalesce(R.B, S.B), C,D]

σ[R.A = S.A ∧ (R.B = S.B ∨ (R.B is null) ∨ (S.B is null))]

×

R S

b) SQL’s “WHERE NOT EXISTS ...” is similar.
Consider R \ S with R and S as above.
SELECT * FROM R WHERE NOT EXISTS (

SELECT * FROM S
WHERE R.A = S.A AND (R.B = S.B OR R.B is null OR S.B is null)).

Semantic Web 5

c) (taken from [AG08], Section 3)
The basic idea is to replace (P1 MINUS P2) by

((P1 OPT P2) FILTER (!(bound(?Y))))

where Y is a variable that occurs in P2, but not in P1.

Two more aspects have to be considered:

• If P2 is of the form (P ′

2 OPT P ′′

2), then Y must be a variable from P ′

2 – i.e., a non-optional

variable (otherwise there are solutions to P2 that do not bind it).

• If there is no such variable (i.e. all non-optional variables of P2 occur also in P1), one must
introduce one: take any non-optional triple pattern T that

i) contains at least one new variable X ′ and

ii) is sure to be satisfied whenever (P1 and) P2 is satisfied (i.e., it can be a renamed copy
(?X q ?X ′) of some triple pattern (?X q ?Z) from P1, or any arbitrary pattern that is
known to be satisfied in the application)

and use ((P1 OPT (P2 AND T)) FILTER (!(bound(X ′)))) .

Example: Names of countries with their cities, where the city is not the capital:

cities-not-capital.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?X ?C

from <file:mondial.n3>

where { ?X a mon:Country; mon:hasCity ?C

OPTIONAL {?X mon:capital ?C . ?X mon:capital ?C2}

FILTER (!(bound(?C2))) }

Variables X and C occur in P1 and in P2, so a (useless) triple pattern is added to bind C2.

d) Ω1 ⊐⊲⊳Ω2 = (Ω1 ⊲⊳ Ω2)∪(Ω1\s(Ω1 ✄< Ω2)) where the semijoin is defined as usual as Ω1 ✄< Ω2 =
π[var(Ω1)](Ω1 ⊲⊳ Ω2), and \s denotes the classical set difference from the relational algebra.

Note that it is not necessary to extend the second part of the union with null values (which
must be done in the relational algebra to have the same format on both sides of the union).

Exercise 2.2 (Outer Join) Recall that SPARQL’s OPTIONAL corresponds to a left outer join.

a) Give a general pattern how to express a full outer join (i.e., “outer” to both sides) in the SPARQL
algebra (consider as input two mappings R and S and give an expression for R⊐⊲⊳⊏S) and in
SPARQL.

b) Give all cities (name as ?XN) that are the capital of a country (:capital) or that are located at
a river (:locatedAt) or both (return the names ?CN of the country and/or the river (?RN)).

a) Replace the full outer join by a two left outer joins: (R⊐⊲⊳S)∪(S ⊐⊲⊳R). Note that the intersec-
tion of both subterms is the inner join. With set semantics, these duplicates are automatically
removed. Otherwise apply a DISTINCT.

With multiset semantics (or in the SPARQL query language), the inner join must be removed
from the second term:

(R⊐⊲⊳S) ∪ ((S ⊐⊲⊳R) \s (S ⊲⊳ R))
or (R⊐⊲⊳S) ∪ ((S ⊐⊲⊳R) \ (S ✄< R))

(recall that \ denotes the not-exists-like operator from the SPARQL algebra, and \s denotes
the classical set difference).

For SPARQL, the query is of the form

Semantic Web 6

DISTINCT ... WHERE { { P_R(X) OPTIONAL P_S(Y) }

UNION

{ P_S(Y) OPTIONAL P_R(X) } }

or

... WHERE { { P_R(X) OPTIONAL P_S(Y) }

UNION

{ { P_S(Y) OPTIONAL P_R(X) } FILTER (!(bound(X))) } }

b) There is an intuitive solution that replaces the outer join by two optionals: take a city, and if
it is a capital, list the country, and if it is located at a river, list the river (multiple answers if
it is located at several rivers):

capitals-at-rivers-1.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?XN ?CN ?RN

from <file:mondial.n3>

where { ?X a mon:City ; mon:name ?XN.

OPTIONAL { ?C a mon:Country; mon:name ?CN; mon:capital ?X }

OPTIONAL { ?X mon:locatedAt ?R . ?R a mon:River; mon:name ?RN }

FILTER (bound(?C) || bound(?R)) }

The query yields at least one line for each city, including those that are neither capitals, nor
located at some river(s). These can be removed by adding
FILTER (bound(?C) || bound(?R)).

The second solution applies the solution of (a):

capitals-at-rivers-2.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?XN ?CN ?RN

from <file:mondial.n3>

where { { ?X a mon:City ; mon:name ?XN .

?C a mon:Country; mon:name ?CN; mon:capital ?X

OPTIONAL { ?X mon:locatedAt ?R . ?R a mon:River; mon:name ?RN } }

UNION

{ ?X a mon:City ; mon:name ?XN .

?X mon:locatedAt ?R . ?R a mon:River; mon:name ?RN

OPTIONAL { ?C a mon:Country; mon:name ?CN; mon:capital ?X }

FILTER (!bound(?C)) }

}

Exercise 2.3 (SPARQL Formal Semantics: OPTIONAL) Consider the SPARQL Formal Se-
mantics.

Prove or show a counterexample:

The statement (from W3C SPARQL Working Draft 20061004)

If OPT(A, B) is an optional graph pattern, where A and B are graph patterns, then S is a
solution of OPT(A,B) if

• S is a pattern solution of A and of B, or

• S is a solution to A, but not to A and B.

describes the same semantics as above.

Semantic Web 7

The given characterization is the one from the W3C SPARQL Recommendation from 20061004.

This “definition” is not only lacking formality, it reads as a weak definition anyway. E.g., it is
missing “S is a solution to A which cannot be extended with a solution to B to a solution of A and
B” which is required for the left outer join in the relational algebra.

How to “break” it? (This is not RDF-specific, but would work in the same way with SQL outer
joins).

The counterexample that illustrates that central problem by showing that this does not only add
“incomplete” final results, but as a consequence of “implicitly allowing” incomplete subresult tuples,
yields also wrong final answers when having nested patterns is taken from [PAG06], Examples 1
and 3:

Consider the RDF database D:

D = { (B1 name paul), (B1 phone 777-3426),
(B2 name john), (B2 email john@acd.edu),
(B3 name george), (B3 webPage www.george.edu),
(B4 name ringo), (B4 email ringo@acd.edu),
(B4 webPage www.starr.edu), (B4 phone 888-4537) }

Query pattern:

P = ((?X ,name, paul) OPT ((?Y , name, george) OPT (?X , email, ?Z))) =: (P1 OPT (P2 OPT P3)) .

The inner OPT is actually a “weak” cartesian product, which -according to the textual definition-
is satisfied also by “left-only, right-null” answers.

[[P1]] = {{X/B1}}.
[[P2]] = {{Y/B3}}.
[[P3]] = {{X/B2, Z/john@}, {X/B4, Z/ringo@}}.
[[P2 OPT P3]] = [[P2 ⊐⊲⊳P3]] = {{X/B2, Y/B3, Z/john@}, {X/B4, Y/B3, Z/ringo@}}.
[[P]] = [[P1]]⊐⊲⊳[[P2 ⊐⊲⊳P3]] = {{X/B1}}.

On the other hand according to the textual W3C characterization, S := {{X/B1, Y/B3}} is a
solution to P : S := {{X/B1, Y/B3}} is a solution to P1 and to P2 OPT P3; the latter holds since
it is a solution to P2, although not to P3.

The counterexample exploits the fact that it is not well-designed (i.e., X occurs inside the inner
optional, and in the outermost pattern, but not directly outside the inner optional).

Note that the “declarative”, but non-algebraic W3C characterization is also problematic from the
operational aspect since the solution must first be guessed before being tested. An algebraic (and
thus compositional) semantics allows a bottom-up computation from inside-out.

Exercise 2.4 (SPARQL: Filter-Safe Expressions) Consider the following definition:

Definition 1 ([PAG06, AG 08]) A SPARQL expression is filter-safe, if for every subexpression
of the form (P FILTER R), var(R) ⊆ var(P).

a) Give a SPARQL query for the following: For each country, give the capital and its population,
and, if exist, all cities in that country that have a higher population, as a result table of the
following form

Semantic Web 8

C CAP CapPop City CityPop
D Berlin 3472009
CH Bern 128848 Zürich 384786
CH Bern 128848 Genf 191557
: : : :

b) Make your query filter-safe (if it is not yet filter-safe).

c) Give the same query in SQL (hint: use the LEFT OUTER JOIN ... ON ... construct)

d) Sketch an algorithm that rewrites non-filter safe queries into safe ones. First, try it on your
own, then maybe look in [AG08].

e) Give a SPARQL query for “Give the names of all countries, such that there is some city in that
country where more than 1/4 of the population are living in”, and make it filter-safe.

f) Give a SPARQL query for “Give the names of all countries, such that there is no city in that
country where more than 1/4 of the population are living in”, and make it filter-safe.

g) Is there a similar thing in SQL, in the relational algebra, and in the relational calculus (DB
Theory/Deductive DB Lecture)?

a) # country-cap-biggercities.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?C ?N1 ?P1 ?N2 ?P2

from <file:mondial.n3>

where { ?X a mon:Country; mon:carCode ?C; mon:capital ?CAP .

?CAP mon:name ?N1; mon:population ?P1 .

OPTIONAL { ?X mon:hasCity [mon:name ?N2; mon:population ?P2]

FILTER (?P2 > ?P1) }}

b) An intuitive solution is to duplicate (relevant parts of) the pattern outside the OPTIONAL for
binding of the variable to inside:

country-cap-biggercities-safe.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?C ?N1 ?P1 ?N2 ?P2

from <file:mondial.n3>

where { ?X a mon:Country; mon:carCode ?C; mon:capital ?CAP .

?CAP mon:name ?N1; mon:population ?P1 .

OPTIONAL { ?X a mon:Country; mon:capital ?CAP .

?CAP mon:population ?P1 .

?X mon:hasCity [mon:name ?N2; mon:population ?P2]

FILTER (?P2 > ?P1) }}

The (copied) variables occurring in the inner pattern and in the outer pattern act as join
variables when computing the OPTIONAL-outer join.

Note that copying ?X a :Country also inside the OPTIONAL might make the evaluation more
efficient by restricting ?X to countries (in contrast to anything that has a population).

c) SELECT x.code, cap.name, cap.population, y.name, y.population

FROM city cap,

country x

LEFT OUTER JOIN

(SELECT code, c.name, c.population

FROM country x2, city cap2, city c

Semantic Web 9

WHERE x2.capital= cap2.name AND x2.code = cap2.country

AND x2.province = cap2.province

AND c.country = x2.code

AND c.population > cap2.population) y

ON x.code = y.code

WHERE x.capital= cap.name AND x.code = cap.country AND x.province = cap.province

Note the structure of the FROM line:

• the left outer join is between country and the nested SFW,

• city cap is only then joined with the result (for the output).

Similar to the SPARQL filter-safe expression, the capital’s population must be accessed inside
the nested SFW which forms the right-hand-side of the left outer join.

d) The complete algorithm can be found in [AG08]. There, the fourth if-case (lines 7-10) covers
the above case. The fifth if-case (lines 12-24) just throws an error in case a filter is still unsafe
(having bound(c) for a constant results in an error), otherwise replaces bound(X) by false
because it cannot be bound.

Note (DB Theory/Deductive DB lecture): consider the similarity with the transformation of
general formulas into RANF when moving conjuncts into negated subformulas to make them
self-contained.

e) The solution is of the same form as above:

quarterpop.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT distinct ?N

FROM <file:mondial.n3>

WHERE {?X a mon:Country; mon:name ?N; mon:population ?XP .

OPTIONAL { ?X mon:hasCity ?C . ?C mon:population ?CP .

FILTER (?CP > 0.25 * ?XP) } .

FILTER (BOUND(?C)) }

and its filter-safe variant is

quarterpop-safe.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT distinct ?N

FROM <file:mondial.n3>

WHERE {?X rdf:type mon:Country; mon:name ?N; mon:population ?XP .

OPTIONAL { ?X mon:hasCity ?C; mon:population ?XP .

?C mon:population ?CP .

FILTER (?CP > 0.25 * ?XP) } .

FILTER (BOUND(?C)) }

f) The solution is again of the same form as above:

noquarterpop.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT distinct ?N

FROM <file:mondial.n3>

WHERE {?X a mon:Country; mon:name ?N; mon:population ?XP .

OPTIONAL { ?X mon:hasCity ?C . ?C mon:population ?CP .

FILTER (?CP > 0.25 * ?XP) } .

Semantic Web 10

FILTER (!BOUND(?C)) }

and its filter-safe variant is

noquarterpop-safe.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT distinct ?N

FROM <file:mondial.n3>

WHERE {?X rdf:type mon:Country; mon:name ?N; mon:population ?XP .

OPTIONAL { ?X mon:hasCity ?C; mon:population ?XP .

?C mon:population ?CP .

FILTER (?CP > 0.25 * ?XP) } .

FILTER (!BOUND(?C)) }

g) Yes: the same issue occurs typically with correlated subqueries (when translating positive corre-
lated subqueries into joins/semijoins, and when translating negated (NOT EXISTS) subqueries
into MINUS or into the safe relational calculus (for positive ones, the logical join variables in
the scope of the outer quantifier can do the work!)).

The SQL OUTER JOIN also join requires also to make the the right side self-contained (in the
SQL code in Exercise 1.2 the country table has also to be added to the right side of the outer
join to be able to access country.population).

Example. Consider the NOT EXISTS examples from above. Its SQL equivalent is

SELECT name

FROM country

WHERE NOT EXISTS

(SELECT *

FROM city

WHERE city.country= country.code

AND city.population > 0.25 * country.population)

The equivalent relational algebra query requires rewriting into a minus:

\

π[code]

country

π[code]

σ[city.pop > 0.25 * country.pop]

⊲⊳ [city.country=country.code]

country city

The access to the country table must be added inside the right-hand-side.

(This requires background knowledge from the DB Theory/Deductive DB lecture)
The query in the relational calculus is

Q(C) = ∃N,Pop,Area, Cap, CapProv :
country(N,C, Pop,Area, Cap, CapProv) ∧
¬∃CN,CProv, CPop, Long, Lat, El : (city(CN,C,CProv, CPop, Long, Lat, El) ∧ CPop > 0.25 ∗ Pop)

Semantic Web 11

which is not in RANF (there is no positive occurrence of Pop inside the not-exists. Its RANF
form is obtained by push-into-not-exists:

Q′(C) = ∃N,Pop,Area, Cap, CapProv :
country(N,C, Pop,Area, Cap, CapProv) ∧
¬∃CN,CProv, CPop, Long, Lat, El : (country(N,C, Pop,Area, Cap, CapProv) ∧

(city(CN,C,CProv, CPop, Long, Lat, El) ∧ CPop > 0.25 ∗ Pop))

The RANF form is also required for translating into Datalog.

