
Chapter 9
Ontologies and the Web Ontology
Language – OWL
• vocabularies can be defined by RDFS

– not so much stronger than the ER Model or UML
(even weaker: no cardinalities)

– not only a conceptual model, but a “real language” with a close connection to the data
level (RDF)

– incremental world-wide approach

– “global” vocabulary can be defined by autonomous partners

• but: still restricted when describing the vocabulary.

342

Ontologies/ontology languages further extend the expressiveness:

• Description Logics

• Topic Maps (in SGML) since early 90s, XTM (XML Topic Maps)

• Ontolingua – non-XML approach from the Knowledge Representation area

• OIL (Ontology Inference Layer): initiative funded by the EU programme for Information
Society Technologies (project: On-To-Knowledge, 1.2000-10.2002); based on RDF/RDFS

• DAML (Darpa Agent Markup Language; 2000) ... first ideas for a Semantic Web language

• DAML+OIL (Jan. 2001)

• developed into OWL (1st version March 02, finalized Feb. 04)

343

THREE VARIANTS OF OWL

Several expressiveness/complexity/decidability levels:

• OWL Full: extension of RDF/RDFS

– classes can also be regarded as individuals (have properties, classes of classes etc.)

• OWL DL

– fragment of OWL that fits into the Description Logics Framework:

* the sets of classes, properties, individuals and literals are disjoint
⇒ only individuals can have arbitrary user-specified properties;

classes and properties have only properties from the predefined RDFS and OWL
vocabularies.

– decidable reasoning

– OWL 1.0 (2004), OWL 2.0 (2009)

• OWL Lite

– subset of OWL DL

– easier migration from frame-based tools (note: F-Logic is a frame-based framework)

– easier reasoning (translation to Datalog)

344

9.1 Description Logics

• Focus on the description of concepts, not of instances

• Terminological Reasoning

• Origin of DLs: Semantic Networks (graphical formalism)

Notions

• Concepts (= classes),
note: literal datatypes (string, integer etc.) are not classes in DL and OWL, but data
ranges
(cf. XML Schema: distinction between simpleTypes and complexTypes)

• Roles (= relationships),

• A Description Logic alphabet consists of a finite set of concept names (e.g. Person, Cat,
LivingBeing, Male, Female, . . .) and a finite set of role names (e.g., hasChild, marriedTo,
. . .),

• constructors for derived concepts and roles,

• axioms for asserting facts about concepts and roles.

345

COMPARISON WITH OTHER LOGICS

Syntax and semantics defined different but similar from first-order logic

• formulas over an alphabet and a small set of additional symbols and combinators

• semantics defined via interpretations of the combinators

• set-oriented, no instance variables
(FOL: instance-oriented with domain quantifiers)

• family of languages depending on what combinators are allowed.

The base: AL
The usual starting point is AL:

• “attributive language”

• Manfred Schmidt-Schauss and Gert Smolka: Attributive Concept Descriptions with
Complements. In Artificial Intelligence 48(1), 1991, pp. 1–26.

• extensions (see later: ALC, ALCQ, ALCQ(D), ALCQI, ALCN etc.)

346

ATOMIC, NAMED CONCEPTS

• atomic concepts, e.g., Person, Male, Female

• the “universal concept” ⊤ (often called “Thing” – everything is an instance of Thing)

• the empty concept ⊥ (“Nothing”). There is no thing that is an instance of ⊥.

CONCEPT EXPRESSIONS USING SET OPERATORS

• intersection of concepts: A ⊓B
Adult ⊓ Male

• negation: ¬A
¬Italian , Person ⊓ ¬Italian

• union (disjunctive concept): A ⊔B
Cat ⊔ Dog – things where it is known that they are cats or dogs, but not necessarily which
one.

347

CONCEPT EXPRESSIONS USING ROLES

Concepts (as an intensional characterization of sets of instances) can be described implicitly
by their properties (wrt. roles).

Let R be a role, C a concept. Then, the expressions ∃R.C and ∀R.C also describe concepts
(intensionally defined concepts) by constraining the roles:

• Existential quantification: ∃R.C – all things that have a filler for the role R that is in C.
∃hasChild.Male means “all things that have a male child”.
Syntax: the whole expression is the “concept expression”, i.e., ∃hasChild.Male(john)
stands for (∃hasChild.Male)(john).

• Range constraints: ∀R.C
∀hasChild.Male means “all things that have only male children (including those that have
no children at all)”.

• Note that ⊥ can be used to express non-existence: ∀R.⊥: all things where all fillers of role
R are of the concept ⊥ (= Nothing) – i.e., all things that do not have a filler for the role R.
∀hasChild.⊥ means “all things that have no children”.

348

SEMANTICS OF CONCEPT CONSTRUCTORS

As usual: by interpretations.

An interpretation I = (I,D) consists of the following:

• a domain D,

• for every concept name C: I(C) ⊆ D is a subset of the domain,

• for every role name R: I(R) ⊆ D ×D is a binary relation over the domain.

Structural Induction

• I(A ⊔B) = I(A) ∪ I(B)

• I(A ⊓B) = I(A) ∩ I(B)

• I(¬A) = D \ I(A)
• I(∃R.C) = {x | there is an y such that (x, y) ∈ I(R) and y ∈ I(C)}
• I(∀R.C) = I(¬∃R.(¬C)) = {x | for all y such that (x, y) ∈ I(R), y ∈ I(C)}

Example

Male ⊓ ∀hasChild.Male is the set of all men who have only sons.

349

STRUCTURE OF A DL KNOWLEDGE BASE

DL Knowledge Base

TBox (schema) – “Terminological Box”

Statements/Axioms about concepts

Man ≡ Person ⊓ Male

Parent ≡ Person ⊓ (∃ ≥ 1 hasChild.⊤)

ParentOfSons ≡ Person ⊓ (∃ ≥ 1 hasChild.Male)

ParentOfOnlySons ≡ Person ⊓ (∀ hasChild.Male)

ABox (data) – “Assertional Box”

Statements/Facts about individuals

Person(john), (Adult ⊓ Male)(john), (¬Italian)(john)

hasChild(john,alice), age(alice,10), Female(alice)

hasChild(john,bob), age(bob,8), Male(bob)

∀hasChild.⊥ (alice), ¬∃hasChild.⊤ (bob)

350

THE TBOX: TERMINOLOGICAL AXIOMS

Definitions and assertions (to be understood as constraints, and as knowledge that can be
used for deduction, e.g. of class membership) about concepts:

• concept subsumption: C ⊑ D; defining a concept hierarchy.
I |= C ⊑ D :⇔ I(C) ⊆ I(D).

• concept equivalence: C ≡ D; often used for defining the left-hand side concept.
Semantics: I |= C ≡ D :⇔ C ⊑ D and D ⊑ C.

TBox Reasoning

• is a concept C satisfiable?

• is C ⊑ D implied by a TBox?

• given the definition of a new concept D, classify it wrt. the given concept hierarchy.

351

THE ABOX: ASSERTIONAL AXIOMS

• contains the facts about instances (using names for the instances) in terms of the basic
concepts and roles:
Person(john), Male(john), hasChild(john,alice)

• contains also knowledge in terms of intensional concepts, e.g., ∃hasChild.Male(john)

TBox + ABox Reasoning

• check consistency between ABox and a given TBox

• ask whether a given instance satisfies a concept C

• ask for all instances that have a given property

• ask for the most specific concepts that an instance satisfies

Note: instances are allowed only in the ABox, not in the TBox.

If instances should be used in the definition of concepts (e.g., “European Country” or “Italian
City”), Nominals must be used (see later).

352

THE BASIS: AL

Concept expressions can be composed as follows:

• intersection of concepts, negation of atomic concepts: C ⊓D, ¬A
• restricted existential quantification: ∃R.⊤
∃hasChild.⊤ means “all things that have a child (... that belongs to the concept “Thing”)”.

• universal restriction: ∀R.C
∀hasChild.Person means “if some thing is a “filler” of a “hasChild” role, (of another thing),
it must be a person.”

Properties of AL
• AL has no “branching” in its tableaux (no union, or any kind of disjunction);

so proofs in AL are linear.

• Note that all notions of RDFS can be expressed already in AL:

– C rdfs:subClassOf D: C ⊑ D – p rdfs:domain C: ∃p.⊤ ⊑ C
– p rdfs:subPropertyOf q: p ⊑ q – p rdfs:range C: ⊤ ⊑ ∀p.C
– where C and D can be composite concept expressions over the AL constructors

listed above.

353

SIMPLE DL LANGUAGES THAT INTRODUCE BRANCHING

• U : “union”; e.g. Parent ≡ Father ⊔Mother.

• E : (unrestricted) existential quantification of the form ∃R.C (recall that AL allows only
∃R.⊤).
HasSon ≡ ∃hasChild.Male , for persons who have at least one male child,
GrandParent ≡ ∃hasChild.(hasChild.⊤) for grandparents.

Note: the FOL equivalent uses variables:
hasSon(x)↔ ∃y(hasChild(x, y) ∧Male(y)),
grandparent(x)↔ ∃y(hasChild(x, y) ∧ ∃x : hasChild(y, x)).

• Exercise: show why unrestricted existential quantification ∃R.C in contrast to ∃R.⊤ leads
to branching.

• A frequently used restriction of AL is called FL− (for “Frame-Language”), which is
obtained by disallowing negation completely (i.e., having only positive knowledge).

354

FAMILY OF DL LANGUAGES: ALC AND FURTHER EXTENSIONS

• C: negation (“complement”) of non-atomic concepts.
Childless ≡ Person ⊓ ¬∃hasChild.⊤ characterizes the set of persons who have no
children (note: open-world semantics of negation!)

Note: the FOL equivalent would be expressed via variables:
∀x(Childless(x)↔ (Person(x) ∧ ¬∃y(hasChild(x, y))))

• U and E can be expressed by C.
(by A ∪B ≡ ¬(¬A ∧ ¬B) and ∃R.C ≡ ¬(∀R.(¬C))).

• ALC is the “smallest” Description Logic that is closed wrt. the set operations.

• N : (unqualified) cardinalities of roles (“number restrictions”).
(≥ 3 hasChild.⊤) for persons who have at least 3 children.

• Q: qualified role restrictions:
(≤ 2 hasChild.Male)
F : like Q, but restricted to cardinalites 0, 1 and “arbitrary”.

355

COMPLEXITY AND DECIDABILITY: OVERVIEW

• Logic L2, i.e., FOL with only two (reusable) variable symbols is decidable.

• Full FOL is undecidable.

• DLs: incremental, modular set of semantical notions.

• only part of FOL is required for concept reasoning.

• ALC can be expressed by FOL, but then, the inherent semantics is lost→ full FOL
reasoner required.

• Actually, ALC can be encoded in FOL by only using two variables→ ALC is decidable.

• Consistency checking of ALC-TBoxes and -ABoxes is PSPACE-complete (proof by
reduction to Propositional Dynamic Logic which is in turn a special case of propositional
multimodal logics).
There are algorithms that are efficient in the average case.

• ALCN goes beyond L2 and PSPACE. Reduction to C2 (including “counting” quantifiers)
yields decidability, but now in NEXPTIME. There are algorithms for ALCN and even
ALCQ in PSPACE.

356

FURTHER EXTENSIONS

• Role hierarchy (H; role subsumption and role equivalence, union/intersection of roles):
hasSon ⊑ hasChild , hasChild ≡ hasSon ⊔ hasDaughter

• Role Constructors similar to regular expressions:
concatenation (hasGrandchild ≡ hasChild ◦ hasChild), transitive closure
(hasDescendant ≡ hasChild+) (indicated by e.g. Hreg or R), and inverse
(isChildOf ≡ hasChild−) (I).

• Data types (indicated by “(D)”), e.g. integers.
Adult ≡ Person ⊓ ∃age. ≥ 18.

• Nominals (O) allow to use individuals from the ABox also in the TBox.
Enumeration Concepts: BeNeLux ≡ {Belgium, Netherlands, Luxemburg},
HasValue-Concepts: GermanCity ≡ ∃inCountry.Germany.

• Role-Value-Maps:
Equality Role-Value-Map: (R1 ≡ R2)(x) ⇔ ∀y : R1(x, y)↔ R2(x, y).
Containment Role-Value-Map: (R1 ⊑ R2)(x) ≡ ∀y : R1(x, y)→ R2(x, y).
(knows ⊑ likes) describes the set of people who like all people they know;
i.e., (knows ⊑ likes)(john) denotes that John likes all people he knows.

357

FORMAL SEMANTICS OF EXPRESSIONS

• I(≥ nR.C) = {x | #{y | (x, y) ∈ I(R) and y ∈ I(C)} ≥ n},

• I(≤ nR.C) = {x | #{y | (x, y) ∈ I(R) and y ∈ I(C)} ≤ n},

• I(nR.C) = {x | #{y | (x, y) ∈ I(R) and y ∈ I(C)} = n},

• I(R ⊔ S) = I(R) ∪ I(S), I(R ⊓ S) = I(R) ∩ I(S),

• I(R ◦ S) = {(x, z) | ∃y : (x, y) ∈ I(R) and (y, z) ∈ I(S)},

• I(R−) = {(y, x) | (x, y) ∈ I(R)},

• I(R+) = (I(R))+.

• If nominals are used, I also assigns an element I(x) ∈ D to each nominal symbol x
(similar to constant symbols in FOL). With this,
I({x1, . . . , xn}) = {I(x1), . . . , I(xn)}, and
I(R.y) = {x | {z | (x, z) ∈ I(R)} = {y}},

• I(R1 ≡ R2) = {x | ∀y : R1(x, y)↔ R2(x, y)},
I(R1 ⊑ R2) = {x | ∀y : R1(x, y)→ R2(x, y)} .

358

OVERVIEW: COMPLEXITY OF EXTENSIONS

• ALCreg , ALCHIQR+ , ALCIO are ExpTime-complete, ALCHIQOR+ is
NExpTime-Complete.,

• Combining composite roles with cardinalities becomes undecidable (encoding in FOL
requires 3 variables).

• Encoding of Role-Value Maps with composite roles in FOL is undecidable (encoding in
FOL requires 3 variables; the logic loses the tree model property).

• ALCQIreg with role-value maps restricted to boolean compositions of basic roles
remains decidable. Decidability is also preserved when role-value-maps are restricted to
functional roles.

359

DESCRIPTION LOGIC MODEL THEORY

The definition is the same as in FOL:

• an interpretation is a model of an ABox A if

– for every atomic concept C and individual x such that C(x) ∈ A, I(x) ∈ I(C), and

– for every atomic role R and individuals x, y such that R(x, y) ∈ A, (I(x), I(y)) ∈ I(R).

• note: the interpretation of the non-atomic concepts and roles is given as before,

• all axioms φ of the TBox are satisfied, i.e., I |= φ.

Based on this, DL entailment is also defined as before:

• a set Φ of formulas entails another formula Ψ (denoted by Φ |= ψ), if I(Ψ) = true in all
models I of Φ.

360

DECIDABILITY, COMPLEXITY, AND ALGORITHMS

Many DLs are decidable, but in high complexity classes.

• decidability is due to the fact that often local properties are considered, and the
verification proceeds tree-like through the graph without connections between the
branches.

• This locality does not hold for cardinalities over composite roles, and for role-value maps
– these lead to undecidability.

• Reasoning algorithms for ALC and many extensions are based on tableau algorithms,
some use model checking (finite models), others use tree automata.

Three types of Algorithms

• restricted (to polynomial languages) and complete

• expressive logics with complete, worst-case EXPTIME algorithms that solve realistic
problems in “reasonable” time. (Fact, HermiT, Racer, Pellet)

• more expressive logics with incomplete reasoning.

361

EXAMPLE

• Given facts: Person ≡ Male ⊔ Female and Person(unknownPerson).

• Query ?-Male(X) yields an empty answer

• Query ?-Female(X) yields an empty answer

• Query ?-(Male ⊔ Female)(X) yields unknownPerson as an answer

• for query answering, all models of the TBox+ABox are considered.

• in some models, the unknownPerson is Male, in the others it is female.

• in all models it is in (Male ⊔ Female).

362

SUMMARY AND COMPARISON WITH FOL

Base Data (DL atomic concepts and atomic roles ∼ RDF)

• unary predicates (concepts/classes): Person(john),

• binary predicates (roles/properties): hasChild(john,alice)

Expressions

Concept/Role Expressions act as unary/binary predicates:

• (∃ hasChild.Male)(john), (Adult ⊓ Parent)(john),

• (hasChild ◦ hasChild)(jack,alice), (neighbor∗)(portugal,germany)

⇒ disjunction, conjunction and quantifiers only in the restricted contexts of expressions

⇒ implications only in the restricted contexts of TBox Axioms:

• C1 ⊑ C2 Parent ⊑ Person

• C1 ≡ C2 Parent ≡ ∃hasChild.⊤
• R1 ⊑ R2 capital ⊑ hasCity

• R1 ≡ R2 neighbor ≡ (neighbor ⊔ neighbor−)

⇒ ABox/TBox (= knowledge base) is a conjunctive set of atoms.

⇒ No formulas with ∧, ∨, ¬ , ∀x, ∃x!

363

9.2 OWL

• the OWL versions use certain DL semantics:

• Base: ALCR+ : (i.e., with transitive roles). This logic is called S (reminiscent to its
similarity to the modal logic S).

• roles can be ordered hierarchically (rdfs:subPropertyOf;H).

• OWL Lite: SHIF(D), Reasoning in EXPTIME.

• OWL DL: SHOIN (D), decidable.
Pellet (2007) implements SHOIQ(D). Decidability is in NEXPTIME (combined complexity
wrt. TBox+ABox), but the actual complexity of a given task is constrained by the maximal
used cardinality and use of nominals and inverses and behaves like the simpler classes.

(Ian Horrocks and Ulrike Sattler: A Tableau Decision Procedure for SHOIQ(D); In IJCAI,
2005, pp. 448-453; available via http://dblp.uni-trier.de)

• OWL 2.0 towards SROIQ(D) and more datatypes ...

364

OWL NOTIONS; OWL-DL VS. RDF/RDFS; MODEL VS. GRAPH

• OWL is defined based on (Description Logics) model theory,

• OWL ontologies can be represented by RDF graphs,

• Only certain RDF graphs are allowed OWL-DL ontologies: those, where individuals,
(user-defined) properties, classes, and OWL’s predefined properties etc. occur in a
well-organized way.

– user-defined properties are only allowed between individuals.

– Relationships talking about classes and properties are restricted to those predefined
in RDFS and OWL.

– (user-defined AnnotationProperties (cf. Slide 420) can be used to associate names
etc. with classes and properties, they are ignored by the reasoner, they “exist” only on
the RDF (data) graph level)

• Reasoning works on the (Description Logic) model, the RDF graph is only a means to
represent it.
(recall: RDF/RDFS “reasoning” works on the RDF (data) graph level)

365

OWL VOCABULARIES

• An OWL-DL vocabulary V is a 7-tuple (= a sorted vocabulary)
V = (Vcls,Vobjprop,Vdtprop,Vannprop,Vindiv,VDT ,Vlit):

• Vcls is the set of URIs denoting class names,
<http://.../mondial/10/meta#Country>

• Vobjprop is the set of URIs denoting object property names,
<http://.../mondial/10/meta#capital>

• Vdtprop is the set of URIs denoting datatype property names,
<http://.../mondial/10/meta#population>

• (Vannprop is the set of URIs denoting annotation property names,)

• Vindiv is the set of URIs denoting individuals, <http://.../mondial/10/countries/D>

• VDT is the set of URIs denoting datatype names,
<http://www.w3.org/2001/XMLSchema#int>

• Vlit is the set of literals;

• the builtin notions (=URIs) from RDF, RDFS, OWL namespaces do not belong to the
vocabulary of the ontology (they are only used for describing the ontology in RDF).

366

OWL INTERPRETATIONS

Since DL is a subset of FOL, the interpretation of an OWL-DL vocabulary can be given as a
FOL interpretation

I = (Iindiv ∪ Icls ∪ Iobjprop ∪ Idtprop ∪ Iannprop ∪ IDT , Uobj ∪ UDT)

where I interprets the vocabulary as

• Iindiv constant symbols (individuals),

• Icls, IDT unary predicates (classes and datatypes),

• Iobjprop, Idtprop, Iannprop binary predicates (properties),

and the universe U is partitioned into

• an object domain Uobj

• and a data domain UDT (the literal values of the datatypes).

367

OWL INTERPRETATIONS

The interpretation I is as follows:

Iindiv: each individual a ∈ Vindiv to an object I(a) ∈ Uobj ,
(e.g., I(<http://.../mondial/10/countries/D>) = germany)

Icls: each class C ∈ Vcls to a set I(C) ⊆ Uobj ,
(e.g., germany ∈ I(<http://.../mondial/10/meta#Country>))

IDT : each datatype D ∈ VDT to a set I(D) ⊆ UDT ,

(e.g., I(<http://www.w3.org/2001/XMLSchema#int>) = {. . . ,−2,−1, 0, 1, 2, . . .})
Iobjprop: each object property p ∈ Vobjprop to a binary relation I(p) ⊆ Uobj × Uobj ,

(e.g., (germany, berlin) ∈ I(<http://.../mondial/10/meta#capital>))

Idtprop: each datatype property p ∈ Vdtprop to a binary relation I(p) ⊆ Uobj × UD,

(e.g., (germany, 83536115) ∈ I(<http://.../mondial/10/meta#population>))

Iannprop: each annotation property p ∈ Vannprop to a binary relation I(p) ⊆ U × U .

368

OWL Class Definitions and Axioms (Overview)

• owl:Class

• The properties of an owl:Class (including owl:Restriction) node describe the properties of
that class.
An owl:Class is required to satisfy the conjunction of all constraints (implicit: intersection)
stated about it.
These characterizations are roughly the same as discussed for DL class definitions:

– Set-theory constructors: owl:unionOf, owl:intersectionOf, owl:complementOf (ALC)
– Enumeration constructor: owl:oneOf (enumeration of elements; O)

– Axioms rdfs:subClassOf, owl:equivalentClass,

– Axiom owl:disjointWith (also expressible in ALC: C disjoint with D is equivalent to
C ⊑ ¬D)

369

OWL NOTIONS (CONT’D)

OWL Restriction Classes (Overview)

• owl:Restriction is a subclass of owl:Class, allowing for specification of a constraint on one
property.

• one property is restricted by an owl:onProperty specifier and a constraint on this property:

– (N , Q, F) owl:cardinality, owl:minCardinality or owl:maxCardinality,

– owl:allValuesFrom (∀R.C), owl:someValuesFrom (∃R.C),

– owl:hasValue (O),

– including datatype restrictions for the range (D)

• by defining intersections of owl:Restrictions, classes having multiple such constraints can
be specified.

370

OWL NOTIONS (CONT’D)

OWL Property Axioms (Overview)

• Distinction between owl:ObjectProperty and owl:DatatypeProperty

• from RDFS: rdfs:domain/rdfs:range assertions, rdfs:subPropertyOf

• Axiom owl:equivalentProperty

• Axioms: subclasses of rdf:Property:
owl:TransitiveProperty, owl:SymmetricProperty, owl:FunctionalProperty,
owl:InverseFunctionalProperty (see Slide 386)

OWL Individual Axioms (Overview)

• Individuals are modeled by unary classes

• owl:sameAs, owl:differentFrom, owl:AllDifferent(o1,. . . ,on).

371

FIRST-ORDER LOGIC EQUIVALENTS

OWL : x ∈ C DL Syntax FOL

C C C(x)

intersectionOf(C1, C2) C1 ⊓ . . . ⊓ Cn C1(x) ∧ . . . ∧ Cn(x)

unionOf(C1, C2) C1 ⊔ . . . ⊔ Cn C1(x) ∨ . . . ∨ Cn(x)

complementOf(C1) ¬C1 ¬C1(x)

oneOf(x1, . . . , xn) {x1} ⊔ . . . ⊔ {xn} x = x1 ∨ . . . ∨ x = xn

OWL : x ∈ C,Restriction on P DL Syntax FOL

someValuesFrom(C ′) ∃P.C ′ ∃y : P (x, y) ∧ C ′(y)

allValuesFrom(C ′) ∀P.C ′ ∀y : P (x, y)→ C ′(y)

hasValue(y) ∃P.{y} P (x, y)

maxCardinality(n) ≤ n.P ∃≤ny : P (x, y)

minCardinality(n) ≥ n.P ∃≥ny : P (x, y)

cardinality(n) n.P ∃=ny : P (x, y)

372

FIRST-ORDER LOGIC EQUIVALENTS (CONT’D)

OWL Class Axioms for C DL Syntax FOL

rdfs:subClassOf(C1) C ⊑ C1 ∀x : C(x)→ C1(x)

equivalentClass(C1) C ≡ C1 ∀x : C(x)↔ C1(x)

disjointWith(C1) C ⊑ ¬C1 ∀x : C(x)→ ¬C1(x)

OWL Individual Axioms DL Syntax FOL

x1 sameAs x2 {x1} ≡ {x2} x1 = x2

x1 differentFrom x2 {x1} ⊑ ¬{x2} x1 6= x2

AllDifferent(x1, . . . , xn)
∧

i 6=j{xi} ⊑ ¬{xj}
∧

i 6=j xi 6= xj

373

FIRST-ORDER LOGIC EQUIVALENTS (CONT’D)

OWL Properties DL Syntax FOL

P P P (x, y)

OWL Property Axioms for P DL Syntax FOL

rdfs:range(C) ⊤ ⊑ ∀P.C ∀x, y : P (x, y)→ C(y)

rdfs:domain(C) C ⊒ ∃P.⊤ ∀x, y : P (x, y)→ C(x)

subPropertyOf(P2) P ⊑ P2 ∀x, y : P (x, y)→ P2(x, y)

equivalentProperty(P2) P ≡ P2 ∀x, y : P (x, y)↔ P2(x, y)

inverseOf(P2) P ≡ P−
2 ∀x, y : P (x, y)↔ P2(y, x)

TransitiveProperty P+ ≡ P ∀x, y, z : ((P (x, y) ∧ P (y, z))→ P (x, z))

∀x, z : ((∃y : P (x, y) ∧ P (y, z))→ P (x, z))

FunctionalProperty ⊤ ⊑ ≤1P.⊤ ∀x, y1, y2 : P (x, y1) ∧ P (x, y2)→ y1 = y2

InverseFunctionalProperty ⊤ ⊑ ≤1P−.⊤ ∀x, y1, y2 : P (y1, x) ∧ P (y2, x)→ y1 = y2

374

SYNTACTICAL REPRESENTATION

• OWL specifications can be represented by graphs: OWL constructs have a
straightforward representation as triples in RDF/XML and Turtle.

• there are several logic-based representations (e.g. Manchester OWL Syntax); TERP
(which can be used with pellet) is a combination of Turtle and Manchester syntax.

• OWL in RDF/XML format: usage of class, property, and individual names:

– as @rdf:about when used as identifier of a subject (owl:Class, rdf:Property and their
subclasses),

– as @rdf:resource as the object of a property.

• some constructs need auxiliary structures (collections):
owl:unionOf, owl:intersectionOf, and owl:oneOf are based on Collections

– representation in RDF/XML by rdf:parseType=”Collection”.

– representation in Turtle by (x1 x2 . . . xn)

– as RDF lists: rdf:List, rdf:first, rdf:rest

375

REQUIREMENT

• every entity in an OWL ontology must be explicitly typed (i.e., as a class, an object
property, a datatype property, . . . , or an instance of some class).
(for reasons of space this is not always done in the examples; in general, it may lead to
incomplete results)

376

QUERYING OWL DATA

• queries are atomic and conjunctive DL queries against the underlying OWL-DL model.

• this model can still be seen as a graph:

– many of the edges are those known from the basic RDF graph

– some edges (and collections) are only there for encoding OWL stuff (describing
owl:unionOf, owl:propertyChain etc.) – these should not be queried

• SPARQL-DL is a subset of SPARQL: not every SPARQL query pattern is allowed for use
on an OWL ontology
(but the reasonable ones are, so in practice this is not a problem.)

• the query language SPARQL-DL allows exactly such well-sorted patterns using the
notions of OWL.

377

SOME TBOX-ONLY REASONING EXAMPLES ON SETS

Example: A Simple Paradox

@prefix : <foo://bla/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:Paradox owl:complementOf :Paradox. [Filename: RDF/paradox.n3]

• without reasoner:
jena -t -ol rdf/xml -if paradox.n3

Outputs the same RDF facts in RDF/XML without checking consistency.

• with reasoner:
jena -e -pellet -if paradox.n3

reads the RDF file, creates a model (and checks consistency) and in this case reports
that it is not consistent:
“There is an anonymous individual which is forced to belong to class foo://bla/Paradox
and its complement”

• Note: the reasoner invents an anonymous individual for checking consistency.
The empty interpretation (with empty domain!) would be a model of P ≡ ¬P .

378

UNION AS A ⊔B ≡ ¬((¬A) ⊓ (¬B)) (DE MORGAN’S RULE)

@prefix : <foo://bla/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:A rdf:type owl:Class. :B rdf:type owl:Class.
:Union1 owl:equivalentClass [owl:unionOf (:A :B)].
:CompA owl:complementOf :A. :CompB owl:complementOf :B.
:IntersectComps owl:equivalentClass [owl:intersectionOf (:CompA :CompB)].
:Union2 owl:complementOf :IntersectComps.
:x rdf:type :A. :x rdf:type :B.
:y rdf:type :CompA. # a negative assertion y not in A would be better -> OWL 2
:y rdf:type :CompB. [Filename: RDF/union.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix : <foo://bla/>
select ?X ?C ?D
from <file:union.n3>
where {{?X rdf:type ?C} UNION {:Union1 owl:equivalentClass ?D}}

[Filename: RDF/union.sparql]

379

EXAMPLE: UNION AND SUBCLASS

@prefix : <foo://bla/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:Male a owl:Class. ## if these lines are missing,
:Female a owl:Class. ## the reasoner complains
:Person owl:equivalentClass [owl:unionOf (:Male :Female)].
:EqToPerson owl:equivalentClass [owl:unionOf (:Female :Male)].
:unknownThing a [owl:unionOf (:Female :Male)]. [Filename: RDF/union-subclass.n3]

• print class tree (with jena -e -pellet -if union-subclass.n3):

owl:Thing
bla:Person = bla:EqToPerson - (bla:unknownThing)

bla:Female
bla:Male

• Male and Female are derived to be subclasses of Person.

• Person and EqToPerson are equivalent classes.

• unknownThing is a member of Person and EqToPerson.

380

Example (Cont’d)

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla/>
select ?SC ?C ?T ?CC ?CD
from <file:union-subclass.n3>
where {{?SC rdfs:subClassOf ?C} UNION

{:unknownPerson rdf:type ?T} UNION
{?CC owl:equivalentClass ?CD}} [Filename: RDF/union-subclass.sparql]

• Note: OWLizations of DL class expressions are always handled as blank nodes, and
used with “owl:equivalentClass”, “rdf:subClassOf”, “rdfs:domain”, “rdfs:range” or “a”.

381

Aside: the same in RDF/XML
(usage of rdf:parseType=“Collection”)

<?xml version="1.0"?>
<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:f="foo://bla/"
xml:base="foo://bla/">

<owl:Class rdf:about="Person">
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="Male"/>
<owl:Class rdf:about="Female"/>
</owl:unionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>
<owl:Class rdf:about="EqToPerson">
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="Female"/>
<owl:Class rdf:about="Male"/>
</owl:unionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>
<f:Person rdf:about="unknownPerson"/>

</rdf:RDF>
[Filename: RDF/union-subclass.rdf]

382

EXERCISE

Consider

<owl:Class rdf:about="C1">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="A"/>
<owl:Class rdf:about="B"/>

</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

and

<owl:Class rdf:about="C2">
<rdfs:subClassOf rdf:resource="A"/>
<rdfs:subClassOf rdf:resource="B"/>

</owl:Class>

• give mathematical characterizations of both cases.

• discuss whether both fragments are equivalent or not.

383

DISCUSSION

• Two classes are equivalent (wrt. the knowledge base) if they have the same interpretation
in every model of the KB.

• C1 is characterized to be the intersection of classes A and B.

• for C2, it is asserted that C2 is a subset of A and that it is a subset of B.

• Thus there can be some c that is in A, B, C1, but not in C2.

• Thus, C1 and C2 are not equivalent.

• C1 is a definition, the statements about C2 are just two constraints (C2 might be empty);
but it can be derived that it must be a subclass of C1.

384

DISCUSSION: FORMAL NOTATION

The DL equivalent to the knowledge base (TBox) is

T = {C1 ≡ (A ⊓B) , C2 ⊑ A , C2 ⊑ B}

The First-Order Logic equivalent is

KB = {∀x : A(x) ∧B(x)↔ C1(x) , ∀x : C2(x)→ A(x) ∧B(x)}

Thus, KB |= ∀x : C2(x)→ A(x) ∧B(x).

Or, in DL: T |= C2 ⊑ C1.

On the other hand, M = (D, I) with D = {c} and

I(A) = {c}, I(B) = {c}, I(C1) = {c}, I(C2) = ∅

is a model of KB (wrt. first-order logic) and T (wrt. DL) that shows that C1 and C2 are not
equivalent.

385

SUBCLASSES OF PROPERTIES

Triple syntax: some property rdf:type a specific type of property

According to their ranges

• owl:ObjectProperty – subclass of rdf:Property; object-valued (i.e. rdfs:range must be an
Object class)

• owl:DatatypeProperty – subclass of rdf:Property; datatype-valued (i.e. its rdfs:range must
be an rdfs:Datatype)

⇒ OWL ontologies require each property to be typed in such a way!
(for reasons of space sometimes omitted in examples)

According to their Cardinality

• specifying n:1 or 1:n cardinality:
owl:FunctionalProperty, owl:InverseFunctionalProperty

⇒ useful for deriving that objects must be different from each other.

According to their Properties

• owl:TransitiveProperty, owl:SymmetricProperty see later ...

386

FUNCTIONAL CARDINALITY SPECIFICATION

property rdf:type owl:FunctionalProperty

• not a constraint, but

• if such a property results in two things ... these things are inferred to be the same.

@prefix : <foo://bla/meta#>.
@prefix persons: <foo://bla/persons/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>.

:world :has_pope persons:jorgebergoglio .
:world :has_pope [:name "Franziskus"] .
:has_pope rdf:type owl:FunctionalProperty.

[Filename: RDF/popes.n3]

prefix : <foo://bla/meta#>
prefix persons: <foo://bla/persons/>
select ?N from <file:popes.n3>
where { persons:jorgebergoglio :name ?N }

[Filename: RDF/popes.sparql]

387

OWL:RESTRICTION – EXAMPLE

• owl:Restriction for ∃p.C and ∀p.C. (cf. earlier examples)

• Definition of “Parent” as Parent ≡ Person ⊓ ∃hasChild.⊤
(can be used for conclusions in both directions),

• Range axiom as constraint: Parent ⊑ ∀hasChild.Person
(use only in the “⇒” direction)

@prefix : <foo://bla/meta#>.
@prefix p: <foo://bla/persons/>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:Parent owl:equivalentClass

[owl:intersectionOf (:Person
[a owl:Restriction;

owl:onProperty :hasChild; owl:minCardinality 1])] .
:Parent rdfs:subClassOf [a owl:Restriction;

owl:onProperty :hasChild; owl:allValuesFrom :Person] .
p:john a :Person; :hasChild p:alice .
p:sue a :Parent . [Filename: RDF/restriction.n3]

388

owl:Restriction – Example (cont’d)

prefix : <foo://bla/meta#>
select ?X ?CC ?Y ?C
from <file:restriction.n3>
where {{?X a :Person; a ?CC} union {?Y :hasChild ?C}} [File: RDF/restriction.sparql]

• How to check whether it knows that Sue has a child?

– ... only implicitly known resources are never contained in SPARQL answers
(impedance mismatch between SPARQL and DL).

– they are only known inside the reasoner.

– for looking inside the reasoner’s “private” knowledge, appropriate auxiliary classes
have to be defined in the OWL ontology which are then queried by SPARQL (as in
many later examples)

• note also the separation of the domain into notions (<foo://bla/meta#>) and instances
(<foo://bla/persons/>).
This will not be cleanly done in the subsequent examples because it costs space.

389

Aside: owl:Restriction as RDF/XML
<?xml version="1.0"?>
<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="foo://bla/meta#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xml:base="foo://bla/persons/">

<owl:Class rdf:about="Parent">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="hasChild"/>
<owl:minCardinality>1</owl:minCardinality>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>
<Person rdf:about="john">

<hasChild><Person rdf:about="alice"/></hasChild>
</Person>

</rdf:RDF>
[Filename: RDF/restriction.rdf]

390

RESTRICTIONS (AND OTHER CLASS SPECIFICATIONS) AS SEPARATE

BLANK NODES

Consider the following (bad) specification:

@prefix : <foo://bla/meta#>. @prefix p: <foo://bla/persons/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:BadIdea a owl:Class; a owl:Restriction;

owl:onProperty :hasChild; owl:minCardinality 1.
p:john :hasChild p:alice.
:cl a owl:Class. [Filename: RDF/restrictionWrong.n3]

This is not allowed in OWL-DL.

• Note [13.6.2019]: specifications of that form, not using a blank node, are ignored by
jena3.10/pellet (the class BadIdea does not exist):

jena -e -if restriction.n3 -if restrictionWrong.n3

Correct specification:

:goodIdea owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

Why? ... there are many reasons, for one of them see next slide.

391

Restrictions Only as Blank Nodes (Cont’d)

A class with two such specifications:

@prefix : <foo://bla/meta#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:BadIdea a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1 .
:BadIdea a owl:Restriction; owl:onProperty :livesIn; owl:someValuesFrom :GermanCity.

[Filename: RDF/badIdea.n3]

• call jena -t -pellet -if badIdea.n3:

owl:Restriction :hasChild 1

:BadIdea

:livesIn :GermanCity

a owl:onProperty owl:minCardinality

owl:onProperty
owl:someValuesFrom

The two restriction specifications are messed up.

392

Restrictions Only as Blank Nodes (Cont’d)

• Thus specify each Restriction specification with a separate blank node:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla/meta#>.
:TwoRestrictions owl:equivalentClass
[owl:intersectionOf
([a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]

[a owl:Restriction; owl:onProperty :livesIn; owl:someValuesFrom :GermanCity])].

[Filename: RDF/twoRestrictions.n3]

The DL equivalent: TwoRestrictions ≡ (∃ hasChild.⊤) ⊓ (∃ livesIn.GermanCity)

Another reason:

:BadSpecOfParent a owl:Restriction;
owl:onProperty :hasChild; owl:minCardinality 1;
rdfs:subClassOf :Person.

... mixes the definition of the Restriction with an assertive axiom:
BSOP ≡ ∃ ≥ 1 hasChild.⊤ ∧ ABDE ⊑ Person
(This expression probably does not meet the original intention – is derives that anything that
has a child is made an instance of class “Person”; cf. Slide 383)

393

MULTIPLE RESTRICTIONS ON A PROPERTY

• “All persons that have at least two children, and one of them is male”

• first: a straightforward wrong attempt

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla/meta#>. @prefix p: <foo://bla/persons/>.
Test: multiple restrictions: the owl:someValuesFrom-condition is then ignored
:HasTwoChildrenOneMale owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild;
owl:someValuesFrom :Male; owl:minCardinality 2]).

:name a owl:FunctionalProperty.
:Male rdfs:subClassOf :Person; owl:disjointWith :Female.
:Female rdfs:subClassOf :Person.
:kate a :Female; :name "Kate"; :hasChild :john.
p:john a :Male; :name "John";

:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"].
p:sue a :Female; :name "Sue";

:hasChild [a :Female; :name "Anne"], [a :Female; :name "Barbara"].
[Filename: RDF/restriction-double.n3]

prefix : <foo://bla/meta#>
select ?X
from <file:restriction-double.n3>
where {?X a :HasTwoChildrenOneMale}

[Filename: RDF/restriction-double.sparql]

• The the owl:someValuesFrom-condition is ignored in this case (Result: John and Sue).

394

Multiple Restrictions on a Property

• “All persons that have at least two children, and one of them is male”

• to expressed as an intersection of two separate restrictions:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla/meta#>. @prefix p: <foo://bla/persons/>.
:HasTwoChildrenOneMale owl:equivalentClass
[owl:intersectionOf (:Person
[a owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Male]
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 2])].

:name a owl:FunctionalProperty.
:Male rdfs:subClassOf :Person; owl:disjointWith :Female.
:Female rdfs:subClassOf :Person.
p:kate a :Female; :name "Kate"; :hasChild p:john.
p:john a :Male; :name "John";

:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"].
p:sue a :Female; :name "Sue";

:hasChild [a :Female; :name "Anne"], [a :Female; :name "Barbara"].
[Filename: RDF/intersect-restrictions.n3]

prefix : <foo://bla/meta#>
select ?X
from <file:intersect-restrictions.n3>
where {?X a :HasTwoChildrenOneMale}

[Filename: RDF/intersect-restrictions.sparql]

• Note: this is different from Qualified Range Restrictions such as “All persons that have at
least two male children” – see Slide 461.

395

USE OF A DERIVED CLASS

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla/meta#>. @prefix p: <foo://bla/persons/>.
p:kate :name "Kate"; :hasChild p:john.
p:john :name "John"; :hasChild p:alice.
p:alice :name "Alice".
:Parent a owl:Class; owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

:Grandparent owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Parent].

[Filename: RDF/grandparent.n3]

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix : <foo://bla/meta#>
select ?G ?P ?GP
from <file:grandparent.n3>
where {{?G a :Parent} UNION

{?GP a :Grandparent} UNION
{:Grandparent rdfs:subClassOf :Parent}}

[Filename: RDF/grandparent.sparql]

396

NON-EXISTENCE OF PROPERTY FILLERS (POSSIBLE SYNTAXES)
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla/meta#>. @prefix p: <foo://bla/persons/>.
:ChildlessA owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:maxCardinality 0]).
:ChildlessB owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:allValuesFrom owl:Nothing]).
:ParentA owl:intersectionOf (:Person [owl:complementOf :ChildlessA]). ### (*)
:ParentB owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]).
:name a owl:FunctionalProperty.
p:john a :Person; :name "John"; :hasChild p:alice, p:bob.
p:sue a :ParentA; :name "Sue".
p:george a :Person; a :ChildlessA; :name "George". [Filename: RDF/parents-childless.n3]

• export class tree: ChildlessA and ChildlessB are equivalent,

• ParentA and ParentB are also equivalent

• note: due to the Open World Assumption, only George is definitely known to be childless.

• Persons where parenthood is not known (Alice, Bob) are neither in Childless nor in
Parent!
Note: (*) states “Parent” vs. “Childless” as a disjoint, total partition of “Person”, but it is not
known to which partition Alice and Bob belong. Both would be possible.

397

NON-EXISTENCE OF PROPERTY FILLERS – OPEN WORLD VS. CLOSED

WORLD

• basically the same, Parent and Childless as classes, more persons,

• the focus is now on the different explicit and implicit knowledge about them:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla/meta#>. @prefix p: <foo://bla/persons/>.
:Childless owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:maxCardinality 0]).
:Parent owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]).
:name a owl:FunctionalProperty.
p:kate a :Person; :name "Kate"; :hasChild p:john, p:sue.
p:john a :Person; :name "John"; :hasChild p:alice, p:bob.
p:alice a :Person; :name "Alice".
p:bob a :Person; :name "Bob".
p:sue a :Parent; :name "Sue".
p:george a :Person; a :Childless; :name "George". [Filename: RDF/childless.n3]

398

prefix : <foo://bla/meta#>
select ?CL ?NCL ?P ?NP ?X ?Y ?NHC from <file:childless.n3>
where { {?CL a :Childless}

union {?NCL a :Person FILTER NOT EXISTS { ?NCL a :Childless}}
union {?P a :Parent}
union {?NP a :Person FILTER NOT EXISTS { ?NP a :Parent}}
union {?X :hasChild ?Y}
union {?NHC a :Person FILTER NOT EXISTS {?NHC :hasChild ?Z}}}

[Filename: RDF/childless.sparql]

DL (and OWL) – everything that is done inside the reasoner : open world – monotonic,
SPARQL: closed-world – non-monotonic:

• ?CL: only George is known to be Childless.

• ?NCL: Closed-World-Complement of ?C – all persons where it cannot be proven that they
are childless – “definitely not childless or maybe not childless” – “where it is consistent to
assume that they are not childless” – non-monotonic (all except George).

• Parents ?P: Sue, Kate, John;

• ?NP: Closed-World-Complement of ?P – (“consistent to be non-parents” – George, Alice, Bob)

• ?X, ?Y: only explicitly known parents/children (Sue’s children not mentioned).

• ?NHC: George, Alice, Bob and Sue(!) – no children of them are explicitly known.

399

INVERSE PROPERTIES

• owl:ObjectProperty owl:inverseOf owl:ObjectProperty

• owl:DatatypeProperties cannot have an inverse
(this would define properties of objects, cf. next slide)

@prefix : <foo://bla/meta#>.
@prefix p: <foo://bla/persons/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:descendant rdf:type owl:TransitiveProperty.
:hasChild rdfs:subPropertyOf :descendant.
:hasChild owl:inverseOf :hasParent.
p:john :hasChild p:alice, p:bob.
p:john :hasParent p:kate .

[Filename: RDF/inverse.n3]

prefix : <foo://bla/meta#>
select ?X ?Y
from <file:inverse.n3>
where {?X :descendant ?Y}

[Filename: RDF/inverse.sparql]

400

No Inverses of owl:DatatypeProperties!

• an owl:DatatypeProperty must not have an inverse:

• “:john :age 35” would imply “35 :ageOf :john” which would mean that a literal has a
property, which is not allowed.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix : <foo://bla/meta#> . @prefix p: <foo://bla/persons/> .
p:john :name "John"; :age 35;
:hasChild [:name "Alice"], [:name "Bob"; :age 8].
:age a owl:DatatypeProperty.
:hasChild a owl:ObjectProperty.
:parent owl:inverseOf :hasChild.
:ageOf owl:inverseOf :age. [Filename: RDF/inverseDTProp.n3]

jena -e -pellet -if inverseDTProp.n3
WARN [main] (OWLLoader.java:352) - Unsupported axiom:
Ignoring inverseOf axiom between foo://bla/meta#ageOf (ObjectProperty)
and foo://bla/meta#age (DatatypeProperty)

401

SPECIFICATION OF INVERSE FUNCTIONAL PROPERTIES

• Mathematics: a mapping m is inverse-functional if the inverse of m is functional:
x p y is inverse-functional, if for every y, there is at most one x such that xpy holds.

• Example:

– hasCarCode is functional: every country has one car code,

– hasCarCode is also inverse functional: every car code uniquely identifies a country.

• OWL:
:m-inverse owl:inverseOf :m .
:m-inverse a owl:FunctionalProperty .
not allowed for e.g. mon:carCode a owl:DatatypeProperty:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:carCode a owl:DatatypeProperty; rdfs:domain :Country;

owl:inverseOf :isCarCodeOf.
:Germany :carCode "D". [Filename: RDF/noinverse.n3]

• the statement is rejected.

402

OWL:INVERSEFUNCTIONALPROPERTY

• such cases are described with owl:InverseFunctionalProperty

• a property P is an owl:InverseFunctionalProperty if
∀x, y1, y2 : P (y1, x) ∧ P (y2, x)→ y1 = y2 holds

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:bla#>.
:carCode rdfs:domain :Country; a owl:DatatypeProperty;

a owl:FunctionalProperty; a owl:InverseFunctionalProperty.
:name a owl:DatatypeProperty; a owl:FunctionalProperty.
:Germany :carCode "D"; :name "Germany".
:DominicanRepublic :carCode "D"; :name "Dominican Republic".

[Filename: RDF/invfunctional.n3]

• the fragment is detected to be inconsistent.

403

NAMED AND UNNAMED RESOURCES

(from the DL reasoner’s perspective)

Named Resources

• resources with explicit global URIs
<http://www.semwebtech.org/mondial/10/country/D>

<foo://bla/bob>

• resources with local IDs/named blank nodes

• unnamed blank nodes

Unnamed (implicit) Resources

• things that exist only implicitly:
John’s child in

:Parent a owl:Class; owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

:john a Parent.

• such implicit resources can even have properties (see next slides).

404

Implicit Resources

• “every person has a father who is a person” and “john is a person”.

• the standard model is infinite:
john, john’s father, john’s father’s father, ...

• pure RDF graphs are always finite,

• only with OWL axioms, one can specify such infinite models,

⇒ they have only finitely many locally to path length n different nodes,

• the reasoner can detect the necessary n (“blocking”, cf. Slides 518 ff) and create “typical”
different structures.

Aside: “standard model” vs “nonstandard model”

• the term “standard model” is not only “what we understand (in this case)”, but is a notion
of mathematical theory which –roughly– means “the simplest model of a specification”

• nonstandard models of the above are those where there is a cycle in the ancestors
relation.
(as the length of the cycle is arbitrary, this would not make it easier for the reasoner -
there is only the possibility to have an owl:sameAs somewhere)

405

Implicit Resources

@prefix : <foo://bla#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:Person owl:equivalentClass [a owl:Restriction;

owl:onProperty :father; owl:someValuesFrom :Person].
:bob :name "Bob"; a :Person; :father :john.
:john :name "John"; a :Person.

[Filename: RDF/fathers-and-forefathers.n3]

prefix : <foo://bla#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?X ?F ?C
from <file:fathers-and-forefathers.n3>
where {{ ?X :father ?F } UNION { ?C a :Person }}

[Filename: RDF/fathers-and-forefathers.sparql]

• Reasoner: works on the model, including blocking, i.e. modulo equivalence up to paths of
length n.

• SPARQL (and SWRL) rules: works on the graph – without the unnamed/implicit resorces.

406

9.3 RDF Graph vs. OWL Model; SPARQL vs. Reasoning

• SPARQL is an RDF (graph) query language

• OWL talks about models

• the RDF graph contains triples

– ABox statements

– partially also TBox – DL concepts are represented by several triples that do not
necessarily belong to the graph

• The reasoner works in terms of DL concepts

– when parsing input (RDF) files (or when activating the reasoner the first time), the DL
concepts and assertions must be extracted ans communicated to the reasoner

• some only existentially known skolem objects exist only inside the reasoner

• (see Slide 572 for a sketch of the Jena architecture)

407

Queries against Metadata - Consequences (Overview)

⇒ SPARQL queries are answered against the graph of triples

• Some OWL notions are directly represented by triples, such as c a owl:Class.

• Some others are directly supported by special handling in the reasoners,
e.g., c rdfs:subClassOf d and c owl:equivalentClass d.

• some others are only “answered” when given explicitly in the RDF input! The results then
do not incorporate further results that could be found by reasoning!

• OWL notions in the input are often not contained as triples, but are only translated into DL
atoms for the reasoner. (e.g. owl:Restriction definitions)

• Most OWL notions in queries are not “understood” as OWL, but only matched.

Queries against Resources

• SPARQL answers are only concerned with the RDF graph, not with existential things that
are only known in the reasoner’s model.

408

METADATA/ONTOLOGY LEVEL QUERYING

• SPARQL is defined by matching the underlying RDF graph.

• OWL triples are not always part of the RDF graph (they are intended to be translated into
DL definitions in the reasoner)

• for traditional DL notions like

?C a owl:Class
?C a rdfs:subClassOf ?D
?C owl:equivalentClass ?D
?C owl:disjointWith ?D

SPARQL implementations support to translate these internally into DL queries against the
reasoner.

• SPARQL-DL (Sirin, Parsia OWLED 2007 [members of the Pellet team]) is a proposal that
allows certain further OWL built-ins to be queried.

409

Test: Querying Metadata

Example: querying metadata (i) as triples, and (ii) by reasoning.

• the triples describing owl:Restrictions from the input are also in the graph and can be
queried; nevertheless, answers are incomplete:

(intersect-restrictions.n3: Slide 395, cats-and-dogs.n3: Slide 461)

... see next slide

410

prefix : <foo://bla#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix owl: <http://www.w3.org/2002/07/owl#>
select ?NC ?NC2 ?X ?P ?S ?A ?M ?C ?MQ ?Y ?Y2
from <file:intersect-restrictions.n3>
from <file:cats-and-dogs.n3>
where { ?X a owl:Restriction

optional {?X owl:onProperty ?P}
optional {?NC owl:equivalentClass ?X . filter(isURI(?NC))

optional {?NC rdfs:subClassOf ?Y . ?Y a owl:Restriction}}
optional {?X owl:equivalentClass ?NC2 . filter(isURI(?NC2))} ### see notes below!
optional {?X rdfs:subClassOf ?Y2 . ?Y2 a owl:Restriction}
optional {?X owl:onClass ?C}
optional {?X owl:someValuesFrom ?S}
optional {?X owl:allValuesFrom ?A}
optional {?X owl:minCardinality ?M}
optional {?X owl:minQualifiedCardinality ?MQ}}

[Filename: RDF/metadata-query.sparql]• NC2 is never bound (although just symmetric to NC!)

• NC=HasTwoDogs subClassOf Y=b1 is found

• X subClassOf Y2 is never bound(!)

411

Ontology Level Querying - a practical example

Consider again the “Childless” ontology from Slide 398.
Check that Childless ⊓ Parent = ∅ and Person ≡ Childless ⊔ Parent (Partitioning)

• Allowed: (single line empty bindings result means true)
prefix : <foo://bla/meta#>
prefix owl: <http://www.w3.org/2002/07/owl#>
select ?X from <file:childless.n3>
where { :Childless owl:disjointWith :Parent } [Filename: RDF/childless1.sparql]

• Not allowed: complex class expression in the query (empty result since it tries a plain
match with the RDF data)
prefix : <foo://bla/meta#>
prefix owl: <http://www.w3.org/2002/07/owl#>
select ?X from <file:childless.n3>
where { :Person owl:equivalentClass [owl:unionOf (:Childless :Parent)] }

[Filename: RDF/childless2.sparql]

NOT ALLOWED

• instead: add auxiliary class definition to the TBox and export class tree with
jena -e -if childless.n3 childless3.n3 :
@prefix : <foo://bla/meta#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:UnionCLP owl:equivalentClass [owl:unionOf (:Childless :Parent)] .

[Filename: RDF/childless3.n3]

412

NOT REASONED: OWL:FUNCTIONALPROPERTY

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:bla#>.
:q a owl:FunctionalProperty.
:p a owl:ObjectProperty; rdfs:domain :D.
:D owl:equivalentClass [a owl:Restriction; owl:onProperty :p;

owl:maxCardinality 1].
:x :p :a, :b. :a owl:differentFrom :b. [Filename:RDF/functional.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo:bla#>
select ?P
from <file:functional.n3>
where { ?P a owl:FunctionalProperty } [Filename:RDF/functional.sparql]

• tries just to match plain { ?P a owl:FunctionalProperty } triples in the RDF graph.
Returns only q.

• does not answer that property q is in fact also functional, although the reasoner knows it.

413

NOT ALLOWED: COMPLEX TERMS IN SPARQL QUERIES

• example: all cities that are a capital

• works well with pellet alone (June 2017); not allowed with Jena

pellet query -query-file countrycaps.sparql \
mondial-europe.n3 mondial-meta.n3 countrycaps.n3

• note: if the answer is empty, check that the mondial-namespace in the used
mondial-meta.n3 is correct.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://www.semwebtech.org/mondial/10/meta#> .
:CountryCapital owl:intersectionOf

(:City [a owl:Restriction; owl:onProperty :isCapitalOf;
owl:someValuesFrom :Country]). [Filename: RDF/countrycaps.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <http://www.semwebtech.org/mondial/10/meta#>
select ?N1 ?N2
where {{?X a :CountryCapital; :name ?N1} union

{?Y a [a owl:Restriction; owl:onProperty :isCapitalOf;
owl:someValuesFrom :Country]; :name ?N2}} [Filename:RDF/countrycaps.sparql]

414

Not Allowed: Complex Terms in SPARQL Queries (Cont’d)

• all organizations whose headquarter city is a capital:

• neither allowed by pellet nor by jena+pellet (June 2017; worked with pellet alone in 2013)

pellet query -query-file organizations-query2.sparql \
mondial-europe.n3 mondial-meta.n3

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <http://www.semwebtech.org/mondial/10/meta#>
select ?A ?H
where {?X a [owl:intersectionOf

(:Organization [a owl:Restriction; owl:onProperty :hasHeadq;
owl:someValuesFrom
[a owl:Restriction; owl:onProperty :isCapitalOf;

owl:someValuesFrom :Country]])];
:abbrev ?A; :hasHeadq ?C . ?C :name ?H . }

[Filename:RDF/organizations-query2.sparql]

415

HOW TO DO IT: SETS OF ANSWERS TO QUERIES AS AD-HOC CONCEPTS

• The result concept (and maybe others) must be added to the ontology.

• Example: all organizations whose headquarter city is a capital:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://www.semwebtech.org/mondial/10/meta#> .
:CountryCapital owl:equivalentClass

[owl:intersectionOf
(:City [a owl:Restriction; owl:onProperty :isCapitalOf;

owl:someValuesFrom :Country])].
<bla:Result> owl:equivalentClass [owl:intersectionOf

(:Organization [a owl:Restriction; owl:onProperty :hasHeadq;
owl:someValuesFrom :CountryCapital])] . [Filename: RDF/organizations-query.n3]

prefix : <http://www.semwebtech.org/mondial/10/meta#>
select ?A ?N
from <file:organizations-query.n3>
from <file:mondial-europe.n3>
from <file:mondial-meta.n3>
where {?X a <bla:Result> . ?X :abbrev ?A . ?X :hasHeadq ?C . ?C :name ?N}

[Filename:RDF/organizations-query.sparql]

416

SPARQL ON THE GRAPH: IMPLICITLY KNOWN RESOURCES

• SPARQL does not return any answer related with nodes (=resources) that are only
implicitly known (=non-named resources)

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:ParentOf12YOChild owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:someValuesFrom :12YOPerson].
:12YOPerson owl:equivalentClass [a owl:Restriction;

owl:onProperty :age; owl:hasValue 12].
[:name "John"; :age 35; a :ParentOf12YOChild;

:hasChild [:name "Alice"; :age 10], [:name "Bob"; :age 8]].
:age rdf:type owl:FunctionalProperty.
:12YOPerson owl:equivalentClass owl:Nothing.

:TwoChildrenParent owl:equivalentClass [a owl:Restriction;
owl:onProperty :hasChild; owl:cardinality 2].

:ThreeChildrenParent owl:equivalentClass [a owl:Restriction;
owl:onProperty :hasChild; owl:minCardinality 3].[Filename: RDF/john-three-children-impl.n3]

417

SPARQL and Non-Named Resources (Cont’d)

• implicit resources exist only on the reasoning level,

• not considered by SPARQL queries:

prefix : <foo://bla#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?X ?C ?A ?T
from <file:john-three-children-impl.n3>
where {{ ?X :name "John" . ?X a ?C }

UNION {?X :age ?A} UNION {?T a :12YOPerson}}

[Filename: RDF/john-three-children-impl.sparql]

• John is a ThreeChildrenParent,

• no person known who is 12 years old

• adding :12YOPerson owl:equivalentClass owl:Nothing makes it inconsistent.

• implicity known things are also not considered for the OWL construct owl:hasKey (cf.
Slides 421 ff.; owl:hasKey is motivated by the relational database model, and not by
Description Logic) and for SWRL rules (cf. Slides 529 ff).

418

9.4 Miscellaneous and Borderline Things in OWL

• Up to now: typical, “basic” OWL-DL

– “natural” small toy ontologies

• issues that break the OWL individuals–classes–properties design:

– Ontology metadata: documentation – for the user, not for the reasoner

– Ontology metadata: facts that are not acceptable for the reasoner

– Data reification: data about data

• issues from classical data management:

– (passive) integrity constraints: keys.

– collections and lists: RDF container concepts; sometimes used for expressing OWL
stuff via RDF triples

– logical rules? – cf. Slides 529 ff. (SWRL) and 603 ff. (Jena Rule-Based Reasoner)

419

9.4.1 Annotation Properties

• in OWL, user-defined properties are only allowed between instances; for classes and
properties only the predefined RDFS and OWL properties are allowed:

– rdfs:subClassOf, rdfs:SubPropertyOf, rdfs:domain, rdfs:range, rdf:type, that still belong
to the RDF graph,

– owl:onProperty, owl:someValuesFrom that exist only in the N3 serialization of the
DL-based OWL vocabulary

⇒ owl:AnnotationProperties can be used to associate names etc. with classes and
properties, they are ignored by the reasoner, they “exist” only on the RDF (data) graph
level (i.e., can be queried by SPARQL):

– predefined annotation properties: rdfs:label (assigning “names” to classes and
properties), rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy,

– commonly used annotation properties for provenance and metadata: e.g., Dublin Core
Metadata: dc:title, dc:subject, dc:creator, dc:contributor, dc:date, . . . ,

– RDF reification (cf. Slide 320): rdf:subject, rdf:predicate, rdf:object,

– user-defined annotation properties can be declared that describe non-OWL/DL
relationships involving classes and properties.

420

9.4.2 [Aside] owl:hasKey (OWL 2)

Declaration of key attributes (k1, . . . , kn) amongst all objects of a class is a relevant issue in
data modeling.

• a key allows for unambiguously identifying a resource amongst a certain subset of the
domain,

• key conditions are passive integrity constraints

• in OWL, keys are not restricted to functional properties
(i.e., SQL’s UNIQUE is not required),

• values of key properties may be unknown for some instances; they might even be
forbidden for some elements of the domain (e.g. using owl:maxCardinality 0 or
owl:allValuesFrom owl:Nothing).

• note: InverseFunctionalProperty covers the simple case that n = 1 and the key is global.

421

owl:hasKey example

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:bla#>.
:name a owl:DatatypeProperty; a owl:FunctionalProperty.
:Country owl:hasKey (:carCode).
:DominicanRepublic a :Country; :carCode "D"; :name "Dominican Republic".
:Germany a :Country; :carCode "D"; :name "Germany". [Filename: RDF/haskey.n3]

• the fragment is inconsistent.

422

OWL:hasKey for Non-Functional Properties

• keys are not restricted to functional properties:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:bla#>.
:District owl:hasKey (:code).
:Country owl:hasKey (:code).
:goettingen a :District; :name "Goettingen"; :code "GOE", "DUD", "HMÃĲ".
:leipzig a :District; :name "Leipzig"; :code "L".
:lahndillkreis a :District; :name "Lahn-Dill-Kreis"; :code "LDK", "DIL", "WZ", "L".
:luxembourg a :Country; :name "Luxembourg"; :code "L".

[Filename: RDF/key-mvd.n3]

prefix : <foo:bla#>
select ?D ?N ?C
from <file:key-mvd.n3>
where { ?X a ?D ; :name ?N; :code ?C }

[Filename: RDF/key-mvd.sparql]

• Lahn-Dill-Kreis and Leipzig are identified (LDK had “L” from 1977-1990).

• Luxembourg is not identified with them since the key definitions are local to districts vs.
countries.

423

OWL:hasKey for Multi-Property-Keys

• consider triples about persons found in different Web sources.

• ABSOLUTELY BUGGY (27.7.2017) – it equates all four persons below:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:bla#>.
:Person owl:hasKey (:givenName :familyName).
_:b1 a :Person; :givenName "John"; :familyName "Doe"; :age 35 .
_:b2 a :Person; :givenName "John"; :familyName "Doe"; :address "Main Street 1" .
_:b3 a :Person; :givenName "Mary"; :familyName "Doe"; :age 32; :address "Main Street 1" .
_:b4 a :Person; :givenName "Donald"; :familyName "Trump"; :age 70; :address "White House" .

#:age a owl:FunctionalProperty.

[Filename: RDF/haskey2.n3]

prefix : <foo:bla#>
select ?X ?P ?Y
from <file:haskey2.n3>
where {?X a :Person ; ?P ?Y}

[Filename: RDF/haskey2.sparql]

424

[ASIDE/EXAMPLE] OWL:HASKEY AND NON-NAMED RESOURCES

Show that owl:hasKey ignores resources that are only implicitly known (OWL ontology see
next slide):

• create an (infinite) sequence of implicitly known fathers ... all being persons and having
the name “Adam”,

• guarantee that the sequence consists of different objects by making it irreflexive.
(note: Transitivity and Irreflexivity are not allowed together, thus actually only every person
is required to be different from his/her father – the grandfather might be the person again)

425

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo:bla#>.
:Person owl:hasKey (:name) .
:name a owl:DatatypeProperty .
:name a owl:InverseFunctionalProperty . ## that would do it instead of hasKey
:father a owl:FunctionalProperty, owl:IrreflexiveProperty; rdfs:range :Person.
:bob a :Person; :father :john .
:john :name "John" .
:Adam owl:equivalentClass [a owl:Restriction; owl:onProperty :name; owl:hasValue "Adam"] .
:Person rdfs:subClassOf

[a owl:Restriction; owl:onProperty :father; owl:someValuesFrom :Adam].
:JohnAdam owl:equivalentClass [owl:intersectionOf (:Adam

[a owl:Restriction; owl:onProperty :name; owl:hasValue "John"])].
:hasFatherJohnAdam owl:equivalentClass [a owl:Restriction;

owl:onProperty :father; owl:someValuesFrom :JohnAdam] .
:hasGrandpaAdam owl:equivalentClass [a owl:Restriction; owl:onProperty :father;

owl:someValuesFrom [a owl:Restriction; owl:onProperty :father;
owl:someValuesFrom :Adam]].

:AdamFatherAdam owl:equivalentClass [owl:intersectionOf (:Adam
[a owl:Restriction; owl:onProperty :father; owl:someValuesFrom :Adam])] .

[Filename: RDF/forefathers-keys.n3]

426

[Aside/Example] owl:hasKey and Non-Named Resources

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo:bla#>
SELECT ?N ?A ?FA ?AFA ?GPA
FROM <forefathers-keys.n3>
WHERE {{ :bob :father [:name ?N] }

UNION { ?A :name "Adam" } ## error/bug complains about anon(1)
UNION { ?FA a :hasFatherJohnAdam }
UNION { ?AFA a :AdamFatherAdam }
UNION { ?GPA a :hasGrandpaAdam }}

[Filename: RDF/forefathers-keys.sparql]

• implicit nodes are not considered in the answers.

• owl:hasKey is not violated by the fact that several only implicitly known people are named
“Adam”.
Note that John, being Bob’s father, also gets the name “Adam”.

427

[Aside/Example] owl:hasKey and Non-Named Resources

Another example using multi-attribute keys (which could not be replaced by
owl:InverseFunctionalProperty):

• nodes in a (x,y)-coordinate system; consider (10,10)

• insert a pointer to an implicit node (10,10).

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo:bla#>.
:XYThing owl:hasKey (:x :y).
:xy10 a :XYThing; :x 10; :y 10; :text "free".
:XYTen owl:intersectionOf ([a owl:Restriction; owl:onProperty :x; owl:hasValue 10]

[a owl:Restriction; owl:onProperty :y; owl:hasValue 10]
[a owl:Restriction; owl:onProperty :text; owl:hasValue "pointedTo"]).

:pointTo a owl:FunctionalProperty; rdfs:range :XYThing.
:foo a [a owl:Restriction;

owl:onProperty :pointTo; owl:onClass :XYTen; owl:qualifiedCardinality 1].
:foo :pointTo :xyxy. ## functionality of pointTo: makes :xyxy=(10,10) explicit

[Filename: RDF/easykeys-impl.n3]

428

[Aside/Example] owl:hasKey and Non-Named Resources (Cont’d)

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo:bla#>
SELECT ?CT ?Y ?T ?SameAsxyxy
FROM <easykeys-impl.n3>
WHERE {{ :foo :pointTo [:text ?CT] }

UNION { ?Y :text ?T }
UNION { [:text ?T] }
UNION { :xyxy owl:sameAs ?SameAsxyxy }}

[Filename: RDF/easykeys-impl.sparql]

Implicit nodes are not considered in the answers.

• with last in line in source commented out: not much – the “pointTo” text is not answered,
nothing is :sameAs.

• with last line commented in: the implicit node which is pointed to is equated with :xyxy,
made explicit and then equated also with :xy10.

429

9.4.3 [Aside] OWL vs. RDF Lists

• RDF provides structures for representing lists by triples (cf. Slide 246): rdf:List, rdf:first,
rdf:rest.
These are distinguished classes/properties.

• OWL/reasoners have a still unclear relationship with these:

– use of lists for its internal representation of owl:unionOf, owl:oneOf etc. (that are
actually based on collections),

– do or do not allow the user to query this internal representation,

– ignore user-defined lists over usual resources.

430

[ASIDE] UNIONOF (ETC) AS TRIPLES: LISTS

• owl:unionOf (x y z), owl:oneOf (x y z) is actually only syntactic sugar for RDF lists.

• The following are equivalent:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.

:Male a owl:Class.
:Female a owl:Class.

:Person a owl:Class; owl:unionOf (:Male :Female).
:EqToPerson a owl:Class;

owl:unionOf
[a rdf:List; rdf:first :Male;
rdf:rest [a rdf:List; rdf:first :Female; rdf:rest rdf:nil]].

:x a :Person. [Filename: RDF/union-list.n3]

• jena -t -if union-list.n3: both in usual Turtle notation as owl:unionOf (:Male :Female).

431

[ASIDE] UNIONOF (ETC) AS TRIPLES (CONT’D)

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla#>
select ?C
from <file:union-list.n3>
where {:Person owl:equivalentClass ?C}

[Filename: RDF/union-list.sparql]

• jena -q -pellet -qf union-list.sparql: both are equivalent.

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla#>
select ?P1 ?P2 ?X ?Q ?R ?S ?T
from <file:union-list.n3>
where {{:Person owl:equivalentClass :EqToPerson} UNION

{:Person ?P1 ?X . ?X ?Q ?R . OPTIONAL {?R ?S ?T}} UNION
{:EqToPerson ?P2 ?X . ?X ?Q ?R} . OPTIONAL {?R ?S ?T}} [Filename: RDF/union-list2.sparql]

• both have actually the same list structure
(pellet2/nov 2008: fails; pellet 2.3/sept 2009: fails)

432

[ASIDE] REASONING OVER LISTS (PITFALLS!)

• rdf:first and rdf:rest are (partially) ignored for reasoning (at least by pellet?); they cannot
be used for deriving other properties from it.

• they can even not be used in queries (since pellet2/nov 2008; before it just showed weird
behavior)

prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla#>
select ?X ?Y ?Z
from <file:union-list.n3>
where {?X a rdf:List; rdf:first ?Y .

OPTIONAL {?X rdf:rest ?Z}}
[Filename: RDF/union-list3.sparql]

• jena-tool with pellet2.3: OK.

• pellet2.3: NullPointerException.

433

[Aside] Extension of a class defined by a list

Given an RDF list as below, define an owl:Class :Invited which contains exactly the elements
in the list (i.e., in the above sample data, :alice, :bob, :carol, :dave).

@prefix : <foo:bla#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
Problem: when the real rdf namespace is used, rdf:first/rest are ignored
@prefix rdfL: <http://www.w3.org/1999/02/22-rdf-syntax-nsL#>. # <<<<<<<<<<<<<
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

:Invited a owl:Class.
:InvitationList rdfs:subClassOf rdfL:List.
:list1 a :InvitationList; rdfL:first :alice;

rdfL:rest [a rdfL:List; rdfL:first :bob;
rdfL:rest [a rdfL:List; rdfL:first :carol;

rdfL:rest [a rdfL:List; rdfL:first :dave; rdfL:rest rdf:nil]]].

rest of an InvitationList is also an InvitationList
:InvitationList owl:equivalentClass

[a owl:Restriction;
owl:onProperty rdfL:rest; owl:allValuesFrom :InvitationList],

[a owl:Restriction;
owl:onProperty rdfL:first; owl:allValuesFrom :Invited].

[Filename: RDF/invitation-list.n3]

prefix : <foo:bla#>
select ?I
from <file:invitation-list.n3>
where {?I a :Invited}

[Filename: RDF/invitation-list.sparql]

434

9.5 Nominals: The O in SHOIQ

TBOX VS. ABOX

Description Logics Terminology

Clean separation between TBox and ABox vocabulary:

• TBox: RDFS/OWL vocabulary for information about classes and properties
(further partitioned into definitions and axioms),

• ABox: Domain vocabulary and rdf:type.

RDF/RDF/OWL Ontologies

• Syntactically: allow to mix everything in a single set of triples.

• OWL-DL restriction: clean usage of individuals vs. classes

– individuals only in application property triples (ABox)

– classes only in context of RDFS/OWL built-ins (like (X a :Person) or (:hasChild
rdfs:range :Person), etc.) (TBox)

435

Recall: Reification

• Reification treats a class (e.g. :Penguin) or a property as an individual (:Penguin a
:Species)

• reification assigns properties from an application domain to classes and properties.

• useful when talking about metadata notions,

• risk: allows for paradoxes.

NOMINALS

• use individuals (that usually occur only in the ABox) in specific positions in the TBox:

• as individuals (that are often implemented in the reasoner as unary classes) with
[a owl:Restriction; owl:onProperty property ; owl:hasValue object]
(the class of all things such that {?x property object} holds).

• in enumerated classes class owl:oneOf (o1,. . . ,on)
(class is defined to be the set {o1,. . . ,on}).
(Note: in owl:oneOf (o1, . . . , on), two items may be the same (open world))

436

USING NOMINALS: ITALIAN CITIES

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
@prefix it: <foo://bla#>.
it:italy owl:sameAs <http://www.semwebtech.org/mondial/10/countries/I/>.
it:ItalianCity a owl:Class; owl:intersectionOf

(mon:City
[a owl:Restriction; owl:onProperty mon:cityIn;
owl:hasValue it:italy]). # Nominal: an individual in a TBox axiom

[Filename: RDF/italiancities.n3]

prefix it: <foo://bla#>
select ?X
from <file:mondial-meta.n3>
from <file:mondial-europe.n3>
from <file:italiancities.n3>
where {?X a it:ItalianCity} [Filename: RDF/italiancities.sparql]

• the query {?X :cityIn <http://www.semwebtech.org/mondial/10/countries/I/>} would be shorter, but
here a class should be defined for further use ...

437

AN ONTOLOGY IN OWL

Consider the Italian-English-Ontology from Slide 52.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix f: <foo://bla#>.
f:Italian rdfs:subClassOf f:Person;

owl:disjointWith f:English;
owl:unionOf (f:Lazy f:LatinLover).

f:Lazy owl:disjointWith f:LatinLover.
f:English rdfs:subClassOf f:Person.
f:Gentleman rdfs:subClassOf f:English.
f:Hooligan rdfs:subClassOf f:English.
f:LatinLover rdfs:subClassOf f:Gentleman.

[Filename: RDF/italian-english.n3]

Class tree with jena -e:

owl:Thing
bla:Person

bla:English
bla:Hooligan
bla:Gentleman

bla:Italian = bla:Lazy
owl:Nothing = bla:LatinLover

• LatinLover is empty,
thus Italian ≡ Lazy.

438

Italians and Englishmen (Cont’d)

• the conclusions apply to the instance level:

@prefix : <foo://bla#>.
:mario a :Italian.

[Filename: RDF/mario.n3]

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix : <foo://bla#>
select ?C
from <file:italian-english.n3>
from <file:mario.n3>
where {:mario rdf:type ?C} [Filename: RDF/italian-english.sparql]

439

AN ONTOLOGY IN OWL

Consider the Italian-Professors-Ontology from Slide 53.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix it: <foo://bla#>.
@base <http://www.semwebtech.org/mondial/10/>. # example for @base->Bolzano:
it:bolzano owl:sameAs <countries/I/provinces/Trentino-Alto+Adige/cities/Bolzano/>.
it:Italian owl:intersectionOf

(it:Person
[a owl:Restriction; owl:onProperty it:livesIn;
owl:someValuesFrom it:ItalianCity]);

owl:unionOf (it:Lazy it:Mafioso it:LatinLover).
it:Professor rdfs:subClassOf it:Person.
it:Lazy owl:disjointWith it:ItalianProf;

owl:disjointWith it:Mafioso;
owl:disjointWith it:LatinLover.

it:Mafioso owl:disjointWith it:ItalianProf;
owl:disjointWith it:LatinLover.

it:ItalianProf owl:intersectionOf (it:Italian it:Professor).
it:enrico a it:Professor; it:livesIn it:bolzano. [Filename: RDF/italian-prof.n3]

prefix : <foo://bla#>
select ?C
from <file:italian-prof.n3>
from <file:mondial-meta.n3>
from <file:mondial-europe.n3>
from <file:italiancities.n3>
where {:enrico a ?C}

[Filename: RDF/italian-prof.sparql]

440

ENUMERATED CLASSES: ONEOF

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
<bla:MontanunionMembers> owl:intersectionOf
(mon:Country
[owl:oneOf
(<http://www.semwebtech.org/mondial/10/countries/NL/>
<http://www.semwebtech.org/mondial/10/countries/B/>
<http://www.semwebtech.org/mondial/10/countries/L/>
<http://www.semwebtech.org/mondial/10/countries/F/>
<http://www.semwebtech.org/mondial/10/countries/I/>
<http://www.semwebtech.org/mondial/10/countries/D/>)]).

<bla:Result> owl:intersectionOf (mon:Organization
[a owl:Restriction; owl:onProperty mon:hasMember;
owl:someValuesFrom <bla:MontanunionMembers>]). [Filename: RDF/montanunion.n3]

select ?X
from <file:montanunion.n3>
from <file:mondial-europe.n3>
from <file:mondial-meta.n3>
where {?X a <bla:Result>}

[RDF/montanunion.sparql]

• Query: all organizations that share a member with the Montanunion.

• Note: members of a owl:oneOf might be owl:sameAs (open world).

441

oneOf (Example Cont’d)

• previous example: “all organizations that share a member with the Montanunion.”
(DL: x ∈ ∃hasMember.MontanunionMembers)

• “all organizations where all members are also members of the Montanunion.”
(DL: x ∈ ∀hasMember.MontanunionMembers)

• The result is empty (although there is e.g. BeNeLux) due to open world: it is not known
whether there may exist additional members of e.g. BeNeLux.

• Only if the membership of Benelux is “closed”, results can be proven:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
<http://www.semwebtech.org/mondial/10/organizations/Benelux/>
a [a owl:Restriction;

owl:onProperty mon:hasMember; owl:cardinality 3].
<bla:SubsetOfMU> owl:intersectionOf (mon:Organization

[a owl:Restriction; owl:onProperty mon:hasMember;
owl:allValuesFrom <bla:MontanunionMembers>]).

mon:name a owl:FunctionalProperty. # not yet given in the metadata

[Filename: RDF/montanunion2.n3]

select ?X
from <file:montanunion.n3>
from <file:montanunion2.n3>
from <file:mondial-europe.n3>
from <file:mondial-meta.n3>
where {?X a <bla:SubsetOfMU>}

[RDF/montanunion2.sparql]

442

oneOf (Example Cont’d)

• “all organizations that cover all members of the Montanunion.”

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
<bla:EUMembers> owl:equivalentClass [a owl:Restriction;

owl:onProperty mon:isMember; owl:hasValue
<http://www.semwebtech.org/mondial/10/organizations/EU/>].

[Filename: RDF/montanunion3.n3]

• note: such a class definition must be created (programmatically) for each organization.

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select ?X # ?Y ?Z
from <file:montanunion.n3>
from <file:montanunion3.n3>
from <file:mondial-europe.n3>
from <file:mondial-meta.n3>
where {#{?Y a <bla:EUMembers>} UNION {?Z a <bla:MontanunionMembers>} UNION

{<bla:MontanunionMembers> rdfs:subClassOf ?X}}
[Filename: RDF/montanunion3.sparql]

443

oneOf (Example Cont’d)

Previous example:

• only for one organization

• defined a class that contains all members of the organization

• not possible to define a family of classes – one class for each organization.

• this would require a parameterized constructor :

“corg is the set of all members of org”

Second-Order Logic: each organization can be seen as a unary predicate (=set):

∀Org : Org(c)↔ hasMember(Org, c)
or in F-Logic syntax: C isa Org :- Org:organization[hasMember->C]

yields e.g.

I(eu) = {germany, france, . . .},
I(nato) = {usa, canada, germany, . . .}
Recall that “organization” itself is a predicate:
I(organization) = {eu, nato, . . . , }
So this would require reification: organizations are both first-order-individuals and
classes. Not allowed in OWL.

444

oneOf (Example Cont’d): Programmatically create classes and Annotation Properties

Using some (Java) framework, e.g., Jena (cf. Slide 545):

• the model (= the graph together with the reasoner) is accessible from Java

• iterate over all instances O of mon:Organization,

– for each of them create the class definition for Omembers, add it to the model,

– count its mon:hasMember edges and add the cardinality restriction to O,

– with (cf. Slide 420)

mon:hasMemberSet a owl:AnnotationProperty;

– add O mon:hasMemberSet Omembers

• and state an appropriate SPARQL query. For answering not only the Omembers class
URIs, but the names of the organization, mon:hasMemberSet has to be used.
(Exercise in the “Semantic Web Lab Course”)

445

CONVENIENCE CONSTRUCT: OWL:ALLDIFFERENT

• owl:oneOf defines a class as a closed set;

• in owl:oneOf (x1, . . . , xn), two items may be the same (open world),

owl:AllDifferent

• Triples of the form :a owl:differentFrom :b state that two individuals are different.
For a database with n elements, one needs
(n− 1) + (n− 2) + . . .+ 2 + 1 =

∑
i=1..n i = n · (n+ 1)/2 = O(n2) such statements.

• The –purely syntactical– convenience construct

[a owl:AllDifferent; owl:members (r1 r2 . . . rn)]

provides a shorthand notation.

– it is immediately translated into the set of all statements
{ri owl:differentFrom rj | i 6= j ∈ 1..n}

– [a owl:AllDifferent; owl:members (...)]
is to be understood as a (blank node) that acts as a specification that the listed things
are different that does not actually exist in the model.

446

[SYNTAX] OWL:ALLDIFFERENT IN RDF/XML

<?xml version="1.0"?>
<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:f="foo://bla#" xml:base="foo://bla#">

<owl:Class rdf:about="Foo">
<owl:equivalentClass> <owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="a"/> <owl:Thing rdf:about="b"/>
<owl:Thing rdf:about="c"/> <owl:Thing rdf:about="d"/>

</owl:oneOf>
</owl:Class> </owl:equivalentClass>

</owl:Class>
<owl:AllDifferent> <!-- use like a class, but is only a shorthand -->

<owl:members rdf:parseType="Collection">
<owl:Thing rdf:about="a"/> <owl:Thing rdf:about="b"/>
<owl:Thing rdf:about="c"/> <owl:Thing rdf:about="d"/>

</owl:members>
</owl:AllDifferent>
<owl:Thing rdf:about="a"> <owl:sameAs rdf:resource="b"/> </owl:Thing>
</rdf:RDF>

[Filename: RDF/alldiff.rdf]

prefix : <foo://bla#>
prefix owl: <http://www.w3.org/2002/07/owl#>
select ?X ?P ?P2 ?V
from <file:alldiff.rdf>
where {?X a owl:AllDifferent ;

?P [?P2 ?V]}

[Filename: RDF/alldiffxml.sparql]

• AllDifferent is only intended as a kind of command to the application to add all pairwise
“different-from” statements, it does not actually introduce itself as triples:

• querying {?X a owl:AllDifferent} is actually not intended.

447

[SYNTAX] OWL:ALLDIFFERENT IN TURTLE

Example:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:Foo owl:equivalentClass [owl:oneOf (:a :b :c :d)].
both the following syntaxes are equivalent and correct:
[a owl:AllDifferent; owl:members (:a :b)].
[] a owl:AllDifferent; owl:members (:c :d).
:a owl:sameAs :b.
:b owl:sameAs :d.

[Filename: RDF/alldiff.n3]

prefix : <foo://bla#>
prefix owl: <http://www.w3.org/2002/07/owl#>
select ?X ?Y
from <file:alldiff.n3>
where {?X a owl:AllDifferent ; ?P [?P2 ?V]}

[Filename: RDF/alldiff.sparql]

448

ONEOF: A TEST

• owl:oneOf defines a “closed set” (use with anonymous class; see below):

• note that in owl:oneOf (x1, . . . , xn), two items may be the same (open world),

• optional owl:AllDifferent to guarantee that (x1, . . . , xn) are pairwise distinct.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:Person owl:equivalentClass [owl:oneOf (:john :alice :bob)].
:john owl:sameAs :alice. # to show that it is consistent that they are the same
[] a owl:AllDifferent; owl:members (:john :alice :bob). # to guarantee distinctness
:name a owl:FunctionalProperty. # this also guarantees distinctness ;)
:john :name "John".
:alice :name "Alice".
:bob :name "Bob".
:d a :Person.
:d owl:differentFrom :john, :alice.
:d owl:differentFrom :bob. ### adding this makes the ontology inconsistent

[Filename: RDF/three.n3]

• Who is :d?

449

oneOf: a Test (cont’d)

Who is :d?

• check the class tree:
bla:Person - (bla:bob, bla:alice, bla:d, bla:john)
The class tree does not indicate which of the “four” identifiers are the same.

• and ask it:
prefix : <foo://bla#>
select ?N
from <file:three.n3>
where {:d :name ?N}

[Filename: RDF/three.sparql]
The answer is ?N/“Bob”.

450

A bug in Pellet

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <foo:bla/meta#>.

:Person a owl:Class ; owl:equivalentClass [owl:oneOf (:john :alice)] .
[a owl:AllDifferent ; owl:members (:john :alice)] .
:john a :Person .
:alice a :Person .
:xxx a :Person .

[Filename: RDF/one-of-bug.n3]

prefix :<foo:bla/meta#>
prefix owl: <http://www.w3.org/2002/07/owl#>
SELECT ?X ?Y ?Z
FROM <file:one-of-bug.n3>
WHERE {{?X owl:differentFrom ?Y} UNION {?X owl:sameAs ?Z}}

[Filename: RDF/one-of-bug.sparql]
xxx differentFrom alice (why?), but not the other way round, and also not john
sameAs xxx.

X Y Z

xxx alice
john alice
alice john
xxx xxx
john john
alice alice

451

9.6 Closing Parts of the Open World

• “forall items” is only applicable if additional items can be excluded (⇒ locally closed
predicate/property),

• often, RDF data is generated from a database,

• certain predicates can be closed by defining restriction classes with maxCardinality.

452

Closing Parts of the Open World for owl:allValuesFrom

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
[a :Male, :ThreeChildrenParent; :name "John";

:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"],
[a :Female; :name "Carol"]].

[a :Female, :TwoChildrenParent; :name "Sue";
:hasChild [a :Female; :name "Anne";], [a :Female; :name "Barbara"]].

:name a owl:FunctionalProperty.
:OneChildParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:cardinality 1].
:TwoChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:cardinality 2].
:ThreeChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:cardinality 3].
:OnlyFemaleChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:allValuesFrom :Female].

[Filename: RDF/allvaluesfrom.n3]

prefix : <foo://bla#>
select ?N
from <file:allvaluesfrom.n3>
where {?X :name ?N .

?X a :OnlyFemaleChildrenParent}

[Filename: RDF/allvaluesfrom.sparql]

453

EXAMPLE: WIN-MOVE-GAME IN OWL

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:Node a owl:Class; owl:equivalentClass

[a owl:Class; owl:oneOf (:a :b :c :d :e :f :g :h :i :j :k :l :m)].
[a owl:AllDifferent; owl:members (:a :b :c :d :e :f :g :h :i :j :k :l :m)].
:edge a owl:ObjectProperty; rdfs:domain :Node; rdfs:range :Node.
:out a owl:DatatypeProperty, owl:FunctionalProperty.
:a a :Node; :out 2; :edge :b, :f.
:b a :Node; :out 3; :edge :c, :g, :k.
:c a :Node; :out 2; :edge :d, :l.
:d a :Node; :out 1; :edge :e.
:e a :Node; :out 1; :edge :a.
:f a :Node; :out 0 .
:g a :Node; :out 2; :edge :i, :h.
:h a :Node; :out 1; :edge :m.
:i a :Node; :out 1; :edge :j.
:j a :Node; :out 0 .
:k a :Node; :out 0 .
:l a :Node; :out 1; :edge :d.
:m a :Node; :out 1; :edge :h. [Filename: RDF/winmove-graph.n3]

a b k

f e c g

d l h i

m j

454

Win-Move-Game in OWL – the Game Axioms

“If a player cannot move, he loses.”

Which nodes are WinNodes, which one are LoseNodes (i.e., the player who has to move
wins/loses)?

• if a player can move to some LoseNode (for the other), he will win.

• if a player can move only to WinNodes (for the other), he will lose.

• recall that there can be nodes that are neither WinNodes nor LoseNodes.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.

:WinNode a owl:Class; owl:intersectionOf (:Node
[a owl:Restriction; owl:onProperty :edge; owl:someValuesFrom :LoseNode]).

:LoseNode a owl:Class; owl:intersectionOf (:Node
[a owl:Restriction; owl:onProperty :edge; owl:allValuesFrom :WinNode]).

[Filename: RDF/winmove-axioms.n3]

455

Win-Move-Game in OWL – Closure

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:DeadEndNode a owl:Class; rdfs:subClassOf :Node;

owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 0],
[a owl:Restriction; owl:onProperty :edge; owl:cardinality 0].

:OneExitNode a owl:Class; rdfs:subClassOf :Node;
owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 1],

[a owl:Restriction; owl:onProperty :edge; owl:cardinality 1].
:TwoExitsNode a owl:Class; rdfs:subClassOf :Node;

owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 2],
[a owl:Restriction; owl:onProperty :edge; owl:cardinality 2].

:ThreeExitsNode a owl:Class; rdfs:subClassOf :Node;
owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 3],

[a owl:Restriction; owl:onProperty :edge; owl:cardinality 3].

[Filename: RDF/winmove-closure.n3]

456

Win-Move-Game in OWL: DeadEndNodes

Prove that DeadEndNodes are LoseNodes:

• obvious: Player cannot move from there

• exercise: give a formal (Tableau) proof

• The OWL Reasoner does it:

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix : <foo://bla#>
select ?X
from <file:winmove-axioms.n3>
from <file:winmove-closure.n3>
where {:DeadEndNode rdfs:subClassOf :LoseNode}

[Filename: RDF/deadendnodes.sparql]

The answer contains an (empty) tuple which means “yes”.

457

Win-Move-Game instance solving in OWL

prefix : <foo://bla#>
select ?W ?L ?DE
from <file:winmove-graph.n3>
from <file:winmove-axioms.n3>
from <file:winmove-closure.n3>
where {{?W a :WinNode} UNION {?L a :LoseNode} UNION

{?DE a :DeadEndNode}} [Filename: RDF/winmove.sparql]

lose: f, k, j, e, l
win: c, a, i, b, d
The nodes g, h, and m are not contained in any of these sets→ they are drawn positions.

458

Aside: Comparison with the Win-Move-Game in the “Deductive Databases” lecture:
Solving vs. Reasoning
• With well-founded or stable semantics, concrete example cases of the win-move-game

could be solved.

• With well-founded or stable semantics cannot make general proofs like
DeadEndeNode ⊑ LoseNode.

• an OWL/DL Reasoner can do such proofs.

Exercise

• Is it possible to characterize DrawNodes in OWL?

– 2 alternative variants:

* using the game axioms/rules,

* consider the possible values: win/lost/drawn,

– test with typical minimal examples,

– explain the results [DB Theory: compare also with well-founded and stable models].

• Is it possible to use SPARQL to find the drawn positions?

459

9.7 OWL 2 (W3C Recommendation since October 2009)

• OWL2 notions belong to the OWL namespace
(aside: development proposal owl11 used a separate namespace)

• Syntactic Sugar: owl:disjointUnionOf, owl:AllDifferent, owl:AllDisjointClasses,
owl:AllDisjointProperties, and negative assertions: ObjectPropertyAssertion vs.
NegativeObjectPropertyAssertion

• User-defined datatypes (like XML Schema simple types).

• SROIQ: Qualified cardinality restrictions (only for non-complex properties), local
reflexivity restrictions (individuals that are related to themselves via the given property),
reflexive, irreflexive, symmetric, and anti-symmetric properties (only for non-complex
properties), disjoint properties (only for non-complex properties), Property chain inclusion
axioms (e.g., SubPropertyOf(PropertyChain(owns hasPart) owns) asserts that if x owns y
and y has a part z, then x owns z.

• SROIQ(D) is decidable.
The Even More Irresistible SROIQ. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. In
Principles of Knowledge Representation and Reasoning (KR 2006). AAAI Press, 2006.
Available at www.cs.man.ac.uk/~sattler/publications/sroiq-tr.pdf.

460

QUALIFIED ROLE RESTRICTIONS

• extends owl:Restriction, owl:onProperty, owl:{min/max}QualifiedCardinality (int value)
with owl:on{Class/DataRange} as result class/type.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#> .
:Dog a owl:Class. :Cat a owl:Class. :Cat owl:disjointWith :Dog.
:alice :name "Alice"; :hasAnimal :pluto, :struppi.
:john :name "John"; :hasAnimal :garfield, :odie.
:pluto a :Dog; :name "Pluto".
:struppi a :Dog; :name "Struppi".
:garfield a :Cat; :name "Garfield".
:odie a :Dog; :name "Odie".
:name a owl:FunctionalProperty.
:HasTwoAnimals owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasAnimal; owl:minCardinality 2].

:HasTwoCats owl:equivalentClass [a owl:Restriction;
owl:onProperty :hasAnimal; owl:onClass :Cat; owl:minQualifiedCardinality 2].

:HasTwoDogs owl:equivalentClass [a owl:Restriction;
owl:onProperty :hasAnimal; owl:onClass :Dog; owl:minQualifiedCardinality 2].

[Filename: RDF/cats-and-dogs.n3]

[Filename: RDF/cats-and-dogs.sparql]

prefix : <foo://bla#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select ?X ?Y ?Z ?C from <file:cats-and-dogs.n3>
where {{?X a :HasTwoCats} UNION

{?Y a :HasTwoDogs} UNION
{?Z a :HasTwoAnimals} UNION
{?C rdfs:subClassOf :HasTwoAnimals}}

461

Qualified Role Restrictions – Another Test

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#> .
:alice :name "Alice"; :hasAnimal :pluto, :struppi.
:john :name "John"; :hasAnimal :garfield, :nermal, :odie.
:sue :hasAnimal :grizabella. :grizabella :name "Grizabella".
:pluto a :Dog; :name "Pluto". :struppi a :Dog; :name "Struppi".
:garfield a :Cat; :name "Garfield". :nermal a :Cat; :name "Nermal".
:odie a :Dog; :name "Odie".
:name a owl:FunctionalProperty.
:Dog a owl:Class. :Cat a owl:Class. :Cat owl:disjointWith :Dog.
:HasAnimal owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasAnimal; owl:minCardinality 1].

:HasCat owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasAnimal; owl:onClass :Cat; owl:minQualifiedCardinality 1].

:HasDog owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasAnimal; owl:someValuesFrom :Dog].

[Filename: RDF/hasanimals.n3]
• export class tree:

HasCat and HasDog are (non-disjoint) subclasses of HasAnimal.

• “owl:onClass X & owl:minQualifiedCardinality 1” is equivalent to “owl:someValuesFrom X”.

• “owl:minCardinality 1” alone is equivalent to “owl:someValuesFrom owl:Thing”.

462

Qualified Role Restrictions – Another Test

@prefix : <foo://bla#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:TwoChildren owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:cardinality 2].
:ThreeMaleChildren owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:onClass :Male; owl:minQualifiedCardinality 3].
:TCTMC owl:equivalentClass

[owl:intersectionOf (:TwoChildren :ThreeMaleChildren)].
[Filename: RDF/twochildren-threemale.n3]

• export class tree:

• note that the ontology is not inconsistent, but that simply TCTMC is derived to be
equivalent to owl:Nothing.

463

OWL: DISJOINT UNION, ALLDISJOINTCLASSES

... syntactic sugar for owl:unionOf and owl:disjointWith:

(only a simple test and syntax example for RDF/XML)

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:f="foo://bla#"
xml:base="foo://bla#">

<owl:Class rdf:about="Person">
<owl:disjointUnionOf rdf:parseType="Collection">
<owl:Class rdf:about="Male"/>
<owl:Class rdf:about="Female"/>
</owl:disjointUnionOf>

</owl:Class>
<f:Male rdf:about="John"/>
<f:Female rdf:about="Mary"/>
<!--<f:Female rdf:about="John"/>-->

</rdf:RDF> [Filename: RDF/disjointunion.xml]

prefix f: <foo://bla#>
select ?X
from <file:disjointunion.xml>
where {?X a f:Person}

[Filename: RDF/disjointunion.sparql]

464

OWL: ALLDISJOINTCLASSES

• General Case without union (similar to owl:AllDifferent):
[a owl:AllDisjointClasses; owl:members (...)]

• Typical usages:

– typically used if subclasses are disjoint specializations, but not every element of the
superclass is an element of one of the specializations.

– for the top classes of an ontology.

465

EXAMPLE: PARRICIDES IN GREEK MYTHODOLOGY (AND IN PSYCHOLOGY)

(from ESWC’07 SPARQL tutorial by Marcelo Arenas et al)
A parricide is a person who killed his/her father; <https://en.wikipedia.org/wiki/Oedipus>

@prefix owl: <http://www.w3.org/2002/07/owl#>. @prefix : <foo:greek#>.
:Person owl:disjointUnionOf (:Parricide :Non-Parricide).

:iokaste a :Person; :hasChild :oedipus.
:oedipus a :Person, :Parricide; :married-to :iokaste; :hasChild :polyneikes.
:polyneikes a :Person; :hasChild :thersandros.
:thersandros a :Person; a :Non-Parricide.

[a owl:AllDifferent; owl:members (:iokaste :oedipus :polyneikes :thersandros)].
:Parent-of-Parricide owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:someValuesFrom :Parricide].
:Parent-of-Non-Parricide owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:someValuesFrom :Non-Parricide].
:Parent-of-Parricide-Grandparent-of-Non-Parricide owl:intersectionOf

([a owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Parricide]
[a owl:Restriction;

owl:onProperty :hasChild; owl:someValuesFrom :Parent-of-Non-Parricide]).
:Parent-of-Parricide-Grandparent-of-Non-Parricide owl:equivalentClass owl:Nothing .
makes it inconsistent [Filename: RDF/parricide.n3]

466

Example (Cont’d)
prefix : <foo:greek#>
prefix owl: <http://www.w3.org/2002/07/owl#>
select ?P ?NP ?PP ?PNP ?X
from <file:parricide.n3>
where {{?P a :Parricide} UNION

{?NP a :Non-Parricide} UNION
{?PP a :Parent-of-Parricide} UNION
{?PNP a :Parent-of-Non-Parricide} UNION
{?X a :Parent-of-Parricide-Grandparent-of-Non-Parricide}}

[Filename: RDF/parricide.sparql]

• No X reported.

• adding P.o.p.Gp.o.Np. ≡ owl:Nothing makes the ontology inconsistent

• :Parent-of-Parricide-Grandparent-of-Non-Parricide owl:equivalentClass
owl:Nothing can thus not be proven, but there is no direct query to the reasoner that it
can be disproven.

⇒ needs an indirect way to prove a statement that is true if the class can be shown to be
non-empty.

467

Example (Cont’d)

• ask Zeus whether Parent-of-Parricide-Grandparent-of-Non-Parricide is really non-empty:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:greek#>.
:zeus :knows :iokaste, :oedipus, :polyneikes, :thersandros.
:KnowsPoPGonP owl:equivalentClass [a owl:Restriction; owl:onProperty :knows;

owl:someValuesFrom :Parent-of-Parricide-Grandparent-of-Non-Parricide].

[Filename: RDF/parricide2.n3]

prefix : <foo:greek#>
select ?K ?X
from <file:parricide.n3>
from <file:parricide2.n3>
where {{?K a :KnowsPoPGonP} UNION

{?X a :Parent-of-Parricide-Grandparent-of-Non-Parricide}}

[Filename: RDF/parricide2.sparql]

• Zeus is in K, i.e., he knows such a person (explicitly: he knows a person who must be a
P.o.p.G.o.N.P),

• but neither SPARQL, nor Zeus know who that person is,

• it can be either Iokaste or Oedipus (depending on whether Polyneikes is a parricide,
which nobody knows).

468

Example (Cont’d) – Exercise

Consider absolutely strictly the answer to parricide2.sparql.

• What has actually been logically proven by the answer?

• What additional human reasoning took place in the lecture when interpreting the answer
to parricide2.sparql as “it can be either Iokaste or Oedipus (depending on whether
Polyneikes is a parricide, which nobody knows)”.

• complete the ontology and the SPARQL query in a way that the human resoning
conclusions are mirrored in the setting.

469

NEGATIVE ASSERTIONS

• Assert that something is known not to hold:
NegativeObjectPropertyAssertion and NegativeDataPropertyAssertion

• with owl:sourceIndividual, owl:assertionProperty, and owl:targetIndividual or
owl:targetValue.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#> .
:john a :Person.
[rdf:type owl:NegativePropertyAssertion;

owl:sourceIndividual :john;
owl:assertionProperty :lives;
owl:targetIndividual :germany].

:German owl:equivalentClass [a owl:Restriction;
owl:onProperty :lives; owl:hasValue :germany].

:NonGerman owl:complementOf :German.

[Filename: RDF/nongerman.n3]

prefix : <foo://bla#>
select ?P
from <file:nongerman.n3>
where {?P a :NonGerman}

[Filename: RDF/nongerman.sparql]

• John is derived to be a Non-German.

470

Comment on Negative Assertions

... are just syntactic sugar for a construct using complement classes (and actually
implemented in the reasoner by this):

Any owl:NegativeObjectPropertyAssertion ¬(x r y) is encoded as

• a restriction R(r, y) based on owl:hasValue:
R(r, y) = {x|(x r y)}
(above: R(lives,germany) = :German)

• its complement CompR(r, y) := ⊤ \R(r, y)
(above: CompR(lives,germany) = :NonGerman)

• and the assertion that x ∈ CompR(r, y).
(above: assert (:john a :NonGerman))

471

DATATYPES: HASVALUE WITH LITERAL VALUE

Characterize a class as the set of all things where a given property has a given value:

• all things in Mondial that have the name “Berlin”:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
@prefix : <foo:bla#>.
:Berlin owl:equivalentClass [a owl:Restriction;

owl:onProperty mon:name; owl:hasValue "Berlin"].

[Filename: RDF/has-literal-value.n3]

prefix : <foo:bla#>
select ?X
from <file:has-literal-value.n3>
from <file:mondial-europe.n3>
where {?X a :Berlin} [Filename: RDF/has-literal-value.sparql]

• Often preferable: define an owl:DataRange (unary or enumeration), give it a url, and use
some/allValuesFrom.

472

ENUMERATED DATATYPES

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix uni: <foo://uni/>.
uni:graded a owl:FunctionalProperty;
a owl:DatatypeProperty; rdfs:range uni:Grades.
uni:Grades a rdfs:Datatype;
owl:equivalentClass [a rdfs:Datatype;
owl:oneOf ("1.0" "1.3" "1.7" "2.0" "2.3" "2.7" "3.0" "3.3" "3.7" "4.0")] .

[a uni:Thesis; uni:author <foo://bla/john>;
uni:graded "2.5"]. [Filename: RDF/grades-one-of-namedset.n3]

• inconsistent: “2.5” does not belong to the allowed grades,

• note: “3” is also not allowed since “3” and “3.0” are different strings,

• see alternative next slide.

473

Enumerated Datatypes
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix uni: <foo://uni/>.
uni:graded a owl:FunctionalProperty;
a owl:DatatypeProperty; rdfs:range [a rdfs:Datatype;
owl:oneOf (1 1.3 1.7 2.0 2.3 2.7 3 3.3 3.7 4)] .

[a uni:Thesis; uni:author <foo://bla/john>;
uni:graded 2]. [Filename: RDF/grades-one-of-anonymous.n3]

prefix : <foo://uni/>
select ?X ?G
from <file:grades-one-of-anonymous.n3>
where {?X :graded ?G} [Filename: RDF/grades-one-of-anonymous.sparql]

• grade 2.5 results in an inconsistency,

• internally (in case of an error message e.g.), the values are represented/handled as
“2.3”̂ x̂sd:decimal,

• parsing and output uses the default representation,

• both representations 2 and 2.0 are allowed.

474

ONEOF ON DATARANGE

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <foo://bla/meta#>.
:Male a owl:Class. :Female a owl:Class.
:Person owl:disjointUnionOf (:Male :Female).
:MaleNames a rdfs:Datatype; owl:equivalentClass [a rdfs:Datatype;

owl:oneOf ("John"^^xsd:string "Bob"^^xsd:string)] .
:FemaleNames a rdfs:Datatype; owl:equivalentClass [a rdfs:Datatype;

owl:oneOf ("Alice"^^xsd:string "Carol"^^xsd:string)].
:Male a owl:Class; owl:equivalentClass [owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :name; owl:someValuesFrom :MaleNames])].
:Female a owl:Class; owl:equivalentClass [owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :name; owl:someValuesFrom :FemaleNames])].
:name a owl:FunctionalProperty; a owl:DatatypeProperty.
:john a :Person; :name "John"^^xsd:string.
:alice a :Person; :name "Alice"^^xsd:string. [Filename: RDF/names.n3]

prefix : <foo://bla/meta#>
select ?C ?N
from <file:names.n3>
where {:john a ?C ; :name ?N}

[Filename: RDF/names.sparql]

475

Exercise

Consider again the ontology from the previous slide

• The name “Maria” is a female first name, but (mainly by catholics) also used as an
additional first name for males, e.g. Rainer Maria Rilke (German poet, 1875-1926), José
Maria Aznar (*1956, Spanish Prime Minister 1996-2004). Discuss the consequences on
the ontology.

• Check what happens with names like “Kim” that can be both male and Female names.

476

REIFICATION

Reification: treat a class (or a property or a statement) as a thing:

• Male and Female are both classes and instances of class Gender

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla/meta#>.
:Person owl:disjointUnionOf (:Male :Female).
:Male a :Gender.
:Female a :Gender.
:MaleNames owl:equivalentClass [a rdfs:Datatype; owl:oneOf ("John" "Bob")] .
:FemaleNames owl:equivalentClass [a rdfs:Datatype; owl:oneOf ("Mary" "Alice")].
:Male a owl:Class; owl:equivalentClass [owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :name; owl:someValuesFrom :MaleNames])].
:Female a owl:Class; owl:equivalentClass [owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :name; owl:someValuesFrom :FemaleNames])].
:name a owl:FunctionalProperty; a owl:DatatypeProperty.
:john a :Person; :name "John".
:mary a :Person; :name "Mary". [Filename: RDF/reification-class.n3]

prefix : <foo://bla/meta#>
select ?P ?N ?S
from <file:reification-class.n3>
where {{?S a :Gender .

?P a :Person ; a ?S ; :name ?N}}
[Filename: RDF/reification-class.sparql]

477

DATATYPES

• common built-ins from XML Schema: int, decimal, ..., date, time, datetime.

• “2”̂ x̂sd:decimal is different from “2”̂ x̂sd:int

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <foo:bla#>.
:value a owl:DatatypeProperty; rdfs:range xsd:decimal.
:foo :value "2"^^xsd:decimal; :value "1.0"^^xsd:decimal.
:foo :value "2.0"^^xsd:decimal; :value "2.3"^^xsd:decimal.
:foo :value "2"^^xsd:integer; :value "1"^^xsd:integer.

[Filename: RDF/decimal.n3]

prefix : <foo:bla#>
select ?X ?Y
from <file:decimal.n3>
where {?X :value ?Y}

[Filename: RDF/decimal.sparql]

• jena: returns 6 results: “2”̂ x̂sd:decimal, 1.0, 2.0, 2.3, 1, 2

• pellet: returns 5 results: 1, 2, 2.3, 2.0, 1.0

478

DEFINING OWN DATATYPES

Two possibilities:

• use XML Schema xsd:simpleType definitions on the Web:

– OWL reasoners parse+understand XML Schema simpleType declarations

– adopt the DAML+OIL solution: datatype URI is constructed from the URI of the XML
schema document and the local name of the simple type.

• OWL vocabulary to do the same as in XML Schema simpleTypes.

479

DATATYPES IN OWL

• use the XML Schema built-in types as resources (int and string must be supported; Pellet
does also support decimal)

• rdfs:Datatype: cf. simple Types in XML schema; derived from the basic ones (e.g. xsd:int
is an rdfs:Datatype)

• specified by

– owl:onDatatype: from what datatype they are derived,

– owl:withRestrictions is a list of restricting facets

– facets as in XML Schema:
xsd:{max/min}{In/Ex}clusive etc.

• similar to owl:Restrictions: define by
myDatatypeName owl:equivalentClass [datatypeSpec].

480

DATA RANGES: ADULTS

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <foo://bla#> .
:kate :name "Kate"; :age 62; :hasChild :john.
:john :name "John"; :age 35; :hasChild [:name "Alice"], [:name "Bob"; :age 8].
:hasChild rdfs:domain :Person; rdfs:range :Person.
:age a owl:FunctionalProperty; a owl:DatatypeProperty; rdfs:range xsd:int.
:name a owl:FunctionalProperty; a owl:DatatypeProperty; rdfs:range xsd:string.
:atLeast18T owl:equivalentClass

[a rdfs:Datatype; owl:onDatatype xsd:int; owl:withRestrictions (_:x1)].
_:x1 xsd:minInclusive 18 .
:Adult owl:intersectionOf (:Person

[a owl:Restriction;
owl:onProperty :age;
owl:someValuesFrom :atLeast18T]).

:Child owl:intersectionOf (:Person
[owl:complementOf :Adult]).

[Filename: RDF/adult.n3]

prefix : <foo://bla#>
select ?AN ?CN ?X ?Y
from <file:adult.n3>
where {{?A a :Adult; :name ?AN} UNION

{?C a :Child; :name ?CN} UNION
{?X :age ?Y}}

[Filename: RDF/adult.sparql]

481

AN EXAMPLE WITH TWO QRRS

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <foo://bla#> .
:kate :name "Kate"; :age 62; :hasChild :john, :sue.
:sue :name "Sue"; :age 32; :hasChild [:name "Barbara"].
:john :name "John"; :age 35;

:hasChild :alice, [:name "Bob"; :age 8], [:name "Alice"; :age 10].
:frank :name "Frank"; :age 40; :hasChild [:age 18], [:age 13].
:hasChild rdfs:domain :Person; rdfs:range :Person.
:age a owl:FunctionalProperty; a owl:DatatypeProperty; rdfs:range xsd:int.
:name a owl:FunctionalProperty; a owl:DatatypeProperty; rdfs:range xsd:string.
:atLeast18T owl:equivalentClass [a rdfs:Datatype;

owl:onDatatype xsd:int; owl:withRestrictions ([xsd:minInclusive 18])].
:Adult owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :age; owl:someValuesFrom :atLeast18T]).
:HasTwoAdultChildren owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:onClass :Adult; owl:minCardinality 2].

[Filename: RDF/adultchildren.n3]

prefix : <foo://bla#>
select ?AN ?N
from <file:adultchildren.n3>
where {{?A a :Adult; :name ?AN} UNION

{?X a :HasTwoAdultChildren; :name ?N}}

[Filename: RDF/adultchildren.sparql]

482

DATARANGE RESTRICTION FOR GEOGRAPHICAL COORDINATES

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <foo://bla/>.
:LongitudeT owl:equivalentClass [a rdfs:Datatype; owl:onDatatype xsd:decimal;

owl:withRestrictions ([xsd:minExclusive -180] [xsd:maxInclusive 180])] .
:LatitudeT owl:equivalentClass [a rdfs:Datatype; owl:onDatatype xsd:decimal;

owl:withRestrictions ([xsd:minInclusive -90] [xsd:maxInclusive 90])] .
:EasternLongitudeT owl:equivalentClass [a rdfs:Datatype;

owl:onDatatype :LongitudeT; owl:withRestrictions ([xsd:minInclusive 0])] .
:EasternHemispherePlace owl:equivalentClass [a owl:Restriction;

owl:onProperty mon:longitude; owl:someValuesFrom :EasternLongitudeT].
mon:longitude rdfs:range :LongitudeT.
mon:latitude rdfs:range :LatitudeT.
:Berlin a mon:City; :name "Berlin"; mon:longitude 13.3; mon:latitude 52.45 .
#:Atlantis a mon:City; :name "Atlantis"; mon:longitude -200; mon:latitude 100 .
:Lisbon a mon:City; :name "Lisbon"; mon:longitude -9.1; mon:latitude 38.7 .

[Filename: RDF/coordinates.n3]

prefix : <foo://bla/>
select ?N
from <file:coordinates.n3>
where {?X :name ?N .
?X a :EasternHemispherePlace}

[Filename: RDF/coordinates.sparql]

483

EXAMPLE: USING XSD DATATYPES

• [Does not work completely ...] Define simple dataypes in an XML Schema file:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="file:coordinates2.xsd">

<xs:simpleType name="longitudeT">
<xs:restriction base="xs:decimal">
<xs:minExclusive value="-180"/>
<xs:maxInclusive value="180"/>
</xs:restriction>

</xs:simpleType>
<xs:simpleType name="easternLongitude">
<xs:restriction base="xs:decimal">
<!-- note: base="longitudeT" would be nicer, but is not allowed when parsing from RDF -->
<xs:minInclusive value="10"/>
<xs:maxInclusive value="180"/>
</xs:restriction>

</xs:simpleType>
<xs:simpleType name="latitudeT">
<xs:restriction base="xs:decimal">
<xs:minInclusive value="-90"/>
<xs:maxInclusive value="90"/>
</xs:restriction>

</xs:simpleType>
</xs:schema>

[Filename: RDF/coordinates2.xsd]

484

... and now use the datatypes ...
<!DOCTYPE rdf:RDF [<!ENTITY mon "http://www.semwebtech.org/mondial/10/meta#">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
<!ENTITY Coords "file:coordinates2.xsd">]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:mon="http://www.semwebtech.org/mondial/10/meta#">

<!-- ****** IMPORTANT: ALL DATATYPES MUST BE MENTIONED TO BE PARSED ****** -->
<rdfs:Datatype rdf:about="&Coords;#longitudeT"/>
<rdfs:Datatype rdf:about="&Coords;#easternLongitude"/>
<rdfs:Datatype rdf:about="&Coords;#latitudeT"/>
<owl:Class rdf:about="&mon;EasternHemispherePlace">
<owl:equivalentClass> <!-- again: don't give a uri to an owl:Restriction! -->
<owl:Restriction>
<owl:onProperty rdf:resource="&mon;longitude"/>
<owl:someValuesFrom rdf:resource="&Coords;#easternLongitude"/>
</owl:Restriction>

</owl:equivalentClass>
</owl:Class>

<mon:City mon:name="Berlin">
<mon:longitude rdf:datatype="&Coords;#longitudeT">13.3</mon:longitude>
<mon:latitude rdf:datatype="&Coords;#latitudeT">52.45</mon:latitude> </mon:City>

<mon:City mon:name="Lisbon">
<mon:longitude rdf:datatype="&Coords;#longitudeT">-9.1</mon:longitude>
<mon:latitude rdf:datatype="&Coords;#latitudeT">38.7</mon:latitude> </mon:City>

</rdf:RDF> [Filename: RDF/coordinates2.rdf]

485

... and now to the query:

prefix : <http://www.semwebtech.org/mondial/10/meta#>
select ?N
from <file:coordinates2.rdf>
where {?X :name ?N . ?X a :EasternHemispherePlace}

[Filename: RDF/coordinates2.sparql]

Comments

• the RDF file must “define” all used rdf:Datatypes to be parsed from the XML Schema file.
(if <rdfs:Datatype rdf:about=“&Coords;#easternLongitude”/> is omitted, the result is
empty)

• if a prohibited value, e.g. longitude=200 is given in the RDF file, it is rejected.

• the rdf:Datatype for mon:longitude and mon:latitude must be given, otherwise it is not
recognized as a number (but it does not matter if xsd:int or coords:longitude is used).

• specifying rdfs:range for longitude and latitude without rdf:Datatype for mon:longitude and
mon:latitude is even inconsistent!

486

QUALIFIED ROLE RESTRICTIONS: EXAMPLE

Example: Country with at least two cities with more than a million inhabitants.

• define “more than a million” as a rdfs:Datatype

• search for all BigCities (= more than 1000000 inhabitants)

• check -via Provinces- which countries have two such cities.

487

Example: Cont’d

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <foo://bla/>.

mon:population rdfs:range xsd:int; a owl:FunctionalProperty. ## all cities are different.
:Million a rdfs:Datatype; owl:onDatatype xsd:int; owl:withRestrictions (:m1).
_:m1 xsd:minInclusive 1000000 .
:HasBigPopulation owl:equivalentClass [a owl:Restriction;

owl:onProperty mon:population; owl:someValuesFrom _:Million].
:BigCity owl:intersectionOf (mon:City :HasBigPopulation).
:ProvinceWithBigCity owl:intersectionOf (mon:Province

[a owl:Restriction; owl:onProperty mon:hasCity; owl:someValuesFrom :BigCity]).
:ProvinceWithTwoBigCities owl:intersectionOf (mon:Province ## europe: empty

[a owl:Restriction; owl:onProperty mon:hasCity; owl:onClass :BigCity; owl:minCardinality 2]).
[owl:intersectionOf (mon:Country ## with 2 big cities, no provinces ## europe: empty

[a owl:Restriction; owl:onProperty mon:hasCity; owl:onClass :BigCity; owl:minCardinality 2]);
rdfs:subClassOf :CountryWithTwoBigCities].

[owl:intersectionOf (mon:Country ## with 2 provs with big cities ## TR,GB,E,R,UA,D,I,NL
[a owl:Restriction; owl:onProperty mon:hasProvince; owl:onClass :ProvinceWithBigCity; owl:minCardinality 2]);
rdfs:subClassOf :CountryWithTwoBigCities].

[owl:intersectionOf (mon:Country ## with a prov with 2 big cities ## europe: empty
[a owl:Restriction; owl:onProperty mon:hasProvince; owl:someValuesFrom :ProvinceWithTwoBigCities]);
rdfs:subClassOf :CountryWithTwoBigCities]. [Filename: RDF/bigcities.n3]

488

Example: Cont’d

@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla/>.
:grmny a mon:Country; mon:hasCity :bln, :mch .
:bln a :BigCity; mon:population 3500000 .
:mch a :BigCity; mon:population 1500000 .
:frc a mon:Country; mon:hasProvince :ile, :prov .
:ile owl:differentFrom :prov.
:prs a mon:City; mon:cityIn :ile; mon:population 2000000 .
:mrs a mon:City; mon:cityIn :prov; mon:population 1500000 .[Filename: RDF/dummy-cities.n3]

prefix : <foo://bla/>
select ?BC ?P1 ?P2 ?X
from <file:bigcities.n3>
from <file:dummy-cities.n3>
#from <file:mondial-europe.n3>
from <file:mondial-meta.n3> ## population a owl:FunctionalProperty !
where {{?BC a :BigCity} UNION

{?P1 a :ProvinceWithBigCity} UNION
{?P2 a :ProvinceWithTwoBigCities} UNION
{?X a :CountryWithTwoBigCities}} [Filename: RDF/bigcities.sparql]

note: when commenting out
:ile owl:differentFrom :prov ,
they might be the same object, but in both cases, France
satisfies one of the conditions (one prov with two big cities, or
two provinces with at least one big city each)

489

9.8 OWL 2: More about Properties

• SHIQ/OWL-DL concentrate on concept definitions (SQ portion),

– The H allows for a hierarchy of properties as already provided by RDFS, the I allows
for inverse.

• SHOIQ/SHOIQ(D) add nominals and datatypes
(i.e., provide database-oriented functionality for handling instances),

• SROIQ provides more expressiveness around properties.

490

TRANSITIVE AND SYMMETRIC PROPERTIES

• transitive: descendants (cf. Slide 241), train connections etc.

• symmetric: married

@prefix : <foo://bla#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>.

[:name "John"; :married [:name "Mary"]] .
:married rdf:type owl:SymmetricProperty.

[Filename: RDF/symmetric-married.n3]

prefix : <foo://bla#>
select ?X ?Y
from <file:symmetric-married.n3>
where { [:name ?X ; :married [:name ?Y]] }

[Filename: RDF/symmetric-married.sparql]

491

SYMMETRIC PROPERTIES

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#> .
:germany :borders :austria, :switzerland.
:borders a owl:SymmetricProperty.

[Filename: RDF/symmetricborders.n3]

prefix : <foo://bla#>
select ?X ?Y
from <file:symmetricborders.n3>
where {?X :borders ?Y}

[Filename: RDF/symmetricborders.sparql]

REFLEXIVE PROPERTIES (OWL 2)

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#> .
:john a :Person; :knows :mary; :hasChild :alice.
:knows a owl:ReflexiveProperty.
:germany a :Country.

[Filename: RDF/reflexive.n3]

prefix : <foo://bla#>
select ?X ?Y
from <file:reflexive.n3>
where {?X :knows ?Y}

[Filename: RDF/reflexive.sparql]

• only applied to individuals, but ... to all of them:
John knows John, Alice knows Alice, and Germany knows Germany.

492

IRREFLEXIVE PROPERTIES

• irreflexive(rel): ∀x : ¬rel(x, x).

• acts as constraint,

• but can also induce that two things must be different:
∀x, y : rel(x, y)→ x 6= y

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#> .
:john :hasAnimal :pluto, :garfield.
:pluto :bites :garfield.
we exclude neurotic animals:
:bites a owl:IrreflexiveProperty.
:HasTwoAnimals owl:equivalentClass

[a owl:Restriction;
owl:onProperty :hasAnimal; owl:minCardinality 2].

[Filename: RDF/irreflexive.n3]

prefix : <foo://bla#>
select ?X ?Y ?Z
from <file:irreflexive.n3>
where {{?X :bites ?Y} UNION

{?X :bites ?X} UNION
{?Z a :HasTwoAnimals}}

[Filename: RDF/irreflexive.sparql]

• Pluto cannot be the same as Garfield.

493

ASYMMETRY

• asymmetric(rel): ∀x, y : ¬rel(x, y) ∨ ¬rel(y, x)).
• acts as a constraint.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:rel a owl:AsymmetricProperty.
:a a :Node; :rel :b.
:b a :Node; :rel :c.
:c a :Node.
:a owl:sameAs :b.

[Filename: RDF/asymmetry.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla#>
select ?X ?Y
from <file:asymmetry.n3>
where {?X a :Node; owl:differentFrom ?Y . ?Y a :Node}

[Filename: RDF/asymmetry.sparql]

• a,b,c, are not identified to be different, but any owl:sameAs makes the ontology
inconsistent.

494

IRREFLEXIVE AND ASYMMETRIC PROPERTIES

• Motivated by the “Ascending, Descending” graphics by M.C.Escher
http://en.wikipedia.org/wiki/Ascending_and_Descending

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla#>.
:Corner owl:oneOf (:a :b :c); rdfs:subClassOf

[a owl:Restriction; owl:onProperty :higher; owl:cardinality 1].
[a owl:AllDifferent; owl:members (:a :b :c)].
:higher rdfs:domain :Corner; rdfs:range :Corner.
:higher a owl:InverseFunctionalProperty. # necessary if there are more corners
:higher a owl:AsymmetricProperty; a owl:IrreflexiveProperty.
#:higher a owl:FunctionalProperty. ## redundant, note cardinality 1
:a :higher :b. [Filename: RDF/escherstairs.n3]

• Solution: a > b, b > c, c > a is the only model.

Exercise

• what happens when the above program is the extended to four corners (:a :b :c :d)?
Analyze the result also from the logical point of view.

prefix : <foo://bla#>
select ?X ?Y
from <file:escherstairs.n3>
where {?X :higher ?Y}

[Filename: RDF/escherstairs.sparql]

495

DISJOINT PROPERTIES

• Syntax: (prop1 owl:propertyDisjointWith prop2)

• for more than 2 properties (similar to owl:AllDifferent):
[a owl:AllDisjointProperties; owl:members (...)]

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla#>.

:name a owl:FunctionalProperty.
:hasCat rdfs:subPropertyOf :hasAnimal; rdfs:range :Cat.
:hasDog rdfs:subPropertyOf :hasAnimal; rdfs:range :Dog.
:hasCat owl:propertyDisjointWith :hasDog.

:alice :name "Alice"; :hasDog :pluto, :struppi.
:john :name "John"; :hasCat :garfield, :nermal; :hasDog :odie.
:sue :hasCat :grizabella.
#:sue :hasDog :grizabella. ### test ##########
:pluto a :Dog; :name "Pluto".
:struppi a :Dog; :name "Struppi".
:garfield a :Cat; :name "Garfield".
:nermal a :Cat; :name "Nermal".
:odie a :Dog; :name "Odie".
:grizabella :name "Grizabella".

[Filename: RDF/disjoint-properties.n3]

prefix : <foo://bla#>
select ?A ?B ?C ?D ?E ?F
from <file:disjoint-properties.n3>
where {{?X :name ?A; :hasCat/:name ?B} UNION

{?X :name ?C; :hasDog/:name ?D} UNION
{?X :name ?E; :hasAnimal/:name ?F}}

[Filename: RDF/disjoint-properties.sparql]

496

AT THE DECIDABILITY BORDER

Some combinations of advanced constructs in DL that are part of OWL 2 are not even
decidable:

• ALCreg with transitivity, composition and union is EXPTIME-complete

• the same when inverse roles and even cardinalities for atomic roles (ALCQIreg) are
added (recall that inverse and transitive closure are important concepts in ontologies).

• The combination of non-atomic roles with cardinalities is in general undecidable.

• The same holds for Role-Value-Maps. Decidability is obtained only for Role-Value-Maps
over functional roles.

497

CARDINALITIES ON ATOMIC ROLES

• a city can be the capital of at most one country (but also of one or more provinces)

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://www.semwebtech.org/mondial/10/meta#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/>.

:City a owl:Class; owl:equivalentClass
[a owl:Restriction; owl:onProperty :isCapitalOf;

owl:onClass :Country; owl:maxCardinality 1].

:name a owl:FunctionalProperty.
mon:C-Oslo a :City;

:isCapitalOf mon:Norway, mon:P-Akershus, mon:P-Oslo.
mon:P-Akershus a :Province; :name "Akershus".
mon:P-Oslo a :Province; :name "Oslo".
mon:Norway a :Country; :name "Norway".
mon:C-Oslo :isCapitalOf :foo. :foo a :Country; :name "Foo".

[Filename: RDF/one-capital.n3]

• use jena -e to export class/instance tree

498

ACROSS THE DECIDABILITY BORDER

• Cardinality restrictions on complex (e.g. transitive) properties are not allowed
(undecidable)⇒ rejected by the reasoner

Every city can be located in several provinces, but these must belong to the same country.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://www.semwebtech.org/mondial/10/meta#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/>.

Countries, Provinces, Cities:
:cityIn rdfs:subPropertyOf :belongsTo; rdfs:range :Province.
:isProvinceOf a owl:FunctionalProperty; rdfs:range :Country; rdfs:subPropertyOf :belongsTo.
:belongsTo a owl:TransitiveProperty; owl:inverseOf :hasProvOrCity. # << trans.Prop <<<

:City a owl:Class; owl:equivalentClass
[a owl:Restriction; owl:onProperty :belongsTo; # << cardinality <<

owl:onClass :Country; owl:maxCardinality 1].

:name a owl:FunctionalProperty.
mon:C-Oslo a :City; :cityIn mon:P-Akershus, mon:P-Oslo.
mon:Norway a :Country; :name "Norway".
mon:P-Akershus a :Province; :isProvinceOf mon:Norway; :name "Akershus".
mon:P-Oslo a :Province; :isProvinceOf mon:Norway; :name "Oslo".
mon:C-Oslo :isCapitalOf :foo. :foo a :Country; :name "Foo". [Filename: RDF/one-country.n3]

499

Detection of Potentially Undecidable Situations

Pellet does not accept combinations that can potentially be undecidable

The ontology is rejected by Pellet:

• Unsupported axiom: Ignoring transitivity axiom due to an existing cardinality restriction for
property http://www.semwebtech.org/mondial/10/meta#belongsTo

• It is also rejected if

:cityIn a owl:FunctionalProperty.
:isProvinceOf a owl:FunctionalProperty.

is added (which guarantees decidability).

500

FURTHER FEATURES OF OWL 2

• Role Chains/Property Chains: SubPropertyOf(PropertyChain(owns hasPart) owns)
asserts that if x owns y and y has a part z, then x owns z.

SubPropertyOf(PropertyChain(parent brother) uncle)
asserts that the relationship “uncle” is a superset of “parent ◦ brother”, i.e., the brothers of
my parents are my uncles.

• Cross-property restrictions/role-value maps:
(cf. draft at http://www.w3.org/Submission/owl11-overview/)

– ObjectAllValuesFrom(likes knows =) describes the class of individuals who like all
people they know (in DL syntax: the concept defined by the role value map (X.knows
⊑ X.likes)).

– DataSomeValuesFrom(shoeSize IQ greaterThan)
describes the class of individuals whose shoeSize is greater than their IQ (in DL
syntax: the concept defined by the role value map (X.shoeSize>X.IQ)).

501

ROLE CHAINS

• (brotherOf ◦ hasChild) ⊑ uncleOf

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#> .

:name a owl:FunctionalProperty.
[owl:propertyChain (:brotherOf :hasChild)]

rdfs:subPropertyOf :uncleOf.
:john a :Person; :brotherOf :sue.
:sue a :Person; :hasChild :anne, :barbara.
:anne :name "Anne". :barbara :name "Barbara".

[Filename: RDF/uncle.n3]

prefix : <foo://bla#>
select ?U ?X
from <file:uncle.n3>
where {?U :uncleOf ?X}

[Filename: RDF/uncle.sparql]

Exercise

• Extend the above example: the husbands of sisters of parents of x are also x’s uncles.

502

Syntax: Role Chains in RDF/XML

... as expected: a blank node that refers to an rdf:List which is an owl:subPropertyOf another
property.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns="foo://bla#"
xml:base="foo://bla#">

<rdf:Description>
<rdfs:subPropertyOf rdf:resource="#uncleOf"/>
<owl:propertyChain>

<rdf:List>
<rdf:rest rdf:parseType="Collection">

<owl:ObjectProperty rdf:about="#child"/>
</rdf:rest>
<rdf:first rdf:resource="#brotherOf"/>

</rdf:List>
</owl:propertyChain>

</rdf:Description>
<Person rdf:ID="sue">
<hasChild rdf:resource="#anne"/>
<hasChild rdf:resource="#barbara"/>
<brother rdf:resource="#john"/>

</Person>
<Person rdf:ID="john">
<brotherOf rdf:resource="#sue"/>

</Person>
</rdf:RDF>

[Filename: RDF/uncle.rdf]

prefix : <foo://bla#>
select ?U ?X
from <file:uncle.rdf>
where {?U :uncleOf ?X}

[Filename: RDF/uncle2.sparql]

503

Role Chains

• propertyChains with 3 or more elements are allowed:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#> .

[owl:propertyChain (:brotherOf :hasChild)]
rdfs:subPropertyOf :uncleOf.

[owl:propertyChain (:parent :brotherOf :hasChild)]
rdfs:subPropertyOf :cousinOf.

[owl:propertyChain (:father)] rdfs:subPropertyOf :parent. ## complains
[:uncleOf rdfs:subPropertyOf owl:propertyChain (:brotherOf :hasChild)]
is also not allowed (nullpointer error from inside pellet!)
:name a owl:FunctionalProperty.
:john a :Person; :brotherOf :sue.
:bob :parent :john.
:sue a :Person; :hasChild :anne, :barbara.
:anne :name "Anne". :barbara :name "Barbara".

[Filename: RDF/propchain3-family.n3]

prefix : <foo://bla#>
select ?U ?X ?C
from <file:propchain3-family.n3>
where {{?U :uncleOf ?X}

union {?C :cousinOf ?X}}
[Filename: RDF/propchain3-family.sparql]

504

Undecidable: Role Chains and Cardinalities

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#> .

:uncleOf a owl:ObjectProperty. ### required !!!
[] rdfs:subPropertyOf :uncleOf;

owl:propertyChain (:brotherOf :hasChild).

:name a owl:FunctionalProperty.
:john a :Person; :brotherOf :sue.
:sue a :Person; :hasChild :anne, :barbara.
:anne :name "Anne". :barbara :name "Barbara".

:UncleOfMore a owl:Class; owl:equivalentClass
[a owl:Restriction; owl:onProperty :uncleOf; owl:minCardinality 2].

[Filename: RDF/uncleOfMore.n3]

prefix : <foo://bla#>
select ?U ?X
from <file:uncleOfMore.n3>
where {{?U :uncleOf ?X} UNION

{?U a :uncleOfMore}}
[Filename: RDF/uncleOfMore.sparql]

• pellet: Definition of uncle is ignored; result empty.
WARNING - Unsupported axiom: Ignoring transitivity and/or complex subproperty axioms
for uncleOf

505

SELF RESTRICIONS: {x | x r x}

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <foo://bla/>.
:Cyclic a owl:Class;

owl:equivalentClass [owl:intersectionOf
(:Node [a owl:Restriction; owl:onProperty :to;

owl:hasSelf "true"^^xsd:boolean])].
:b a :Cyclic.
:a a :Node; :to :a, :b.
:a a [owl:complementOf :Cyclic].

[Filename: RDF/cyclic.n3]

prefix : <foo://bla/>
select ?N ?N2
from <file:cyclic.n3>
where {{?N a :Cyclic} UNION

{:a a :Cyclic} UNION
{?N :to ?N2}}

[Filename: RDF/cyclic.sparql]

506

Self restrictions (Cont’d)

... just another example:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <foo://bla/>.
:NeuroticAnimal a owl:Class;

owl:equivalentClass [owl:intersectionOf
(:Animal

[a owl:Restriction; owl:onProperty :bites; owl:hasSelf "true"^^xsd:boolean])].
:pluto a :Animal; :bites :pluto, :garfield.
:garfield a :NeuroticAnimal.

[Filename: RDF/neurotic.n3]

prefix : <foo://bla/>
select ?N ?N2
from <file:neurotic.n3>
where {{?N a :NeuroticAnimal} UNION

{?N :bites ?N2}} [Filename: RDF/neurotic.sparql]

507

Self restrictions (Cont’d)

... check for existence of cycles in a graph: Transitivity + SelfRestriction is not allowed:

WARNING: Unsupported axiom: Ignoring transitivity axiom due to an existing self restriction
for property path

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <foo://bla#>.
:edge rdfs:subPropertyOf :path. ### use a win-move game as input
:path a owl:TransitiveProperty.
:Cyclic a owl:Class;

owl:equivalentClass [owl:intersectionOf (:Node
[a owl:Restriction; owl:onProperty :path; owl:hasSelf "true"^^xsd:boolean])].

[Filename: RDF/cyclic-transitive.n3]

prefix : <foo://bla#>
select ?X ?Y ?N
from <file:cyclic-transitive.n3>
from <file:winmove-graph.n3>
where {{?X :path ?Y} UNION {?N a :Cyclic}} [Filename: RDF/cyclic-transitive.sparql]

508

9.9 DL and OWL Proving and Query Answering

• Tableau provers use refutation techniques:
Given an ontology formalization Φ,
prove Φ |= ϕ by starting a tableau over Φ ∧ ¬ϕ and trying to close it.

For that, it is well-suited for testing if something holds:

• consistency of a concept definition:
KB |= C ≡ ⊥ ⇔ KB ∪ {C(a)} for a new constant a is unsatisfiable.
(note: often C is a complex DL class definition that encodes the answers to a query)

• concept containment:
KB |= C ⊑ D ⇔ KB |= (C ⊓ ¬D) ≡ ⊥.

• concept equivalence:
KB |= C ≡ D ⇔ KB |= C ⊑ D and KB |= D ⊑ C.

• concept membership (for a given individual a):
KB |= C(a) ⇔ KB ∪ {¬C(a)} is unsatisfiable.

509

TABLEAU EXPANSION RULES FOR DL

• DL: uses a tableau without free variables. Expansion of universally quantified formulas
takes only place for constants that are actually introduced.

• makes it more similar to Model Checking

• actually, not the tableau is generated completely, but branches are investigated by
backtracking.

(C ⊓D)(s) Add C(s) and D(s) to the branch.

(C ⊔D)(s) Add two branches, one with C(s), the other with D(s).

∃R.C(s) Add R(s, c) and C(c) where c is a new constant symbol.

∀R.C(s) Add C(t) whenever R(s, t) is on the tableau (requires bookkeeping).

≥ nR.C(s) Add R(s, c1), . . . , R(s, cn), C(c1), . . . , C(cn) and ci 6= cj where ci are new.

≤ nR.C(s) Bookkeeping about {c | R(s, c)} and {c | C(c)}. Whenever more than n, then
add branches with all combinations ci = cj . Continue bookkeeping.

C ⊑ D For each s recursively add two branches with ¬C(s) and D(s).

Closure Close a branch whenever A(s) and ¬A(s) occur.

510

QUERY ANSWERING IN DL AND OWL

Query answering requires to find all answer bindings to variables.

• find all X such that KB |= C(X).

• find all D such that KB |= D ⊑ C.

Start a tableau and collect substitutions that close branches:

• start with KB ∪ {¬C(X)}.

• collect substitutions for X for which the tableau closes.

• without free variables: generate a new ¬C(s) whenever any rule introduces a constant s.
(= check if that s is an answer)

• harder to implement.
Not always all answers are found by the current implementations.

• help the system by not only asking “{?X :age ?Y}”, but pruning the search space by “{?X a
:Person; :age ?Y}”.

511

DL TABLEAUX: EXAMPLES

Who are John’s children?
hasChild(kate,john)
name(john,“John”)

hasChild(john,alice)
name(alice,“Alice”)
hasChild(john,bob)
name(bob,“Bob”)

Query: ?- hasChild(john,X).

¬ hasChild(john,X)

✷{X1 ← alice}

✷{X2 ← bob}

What are the names of John’s children?
hasChild(john,alice)
hasChild(john,bob)
name(john,“John”)
name(alice,“Alice”)
name(bob,“Bob”)

Query: ?- hasChild(john,_X), name(_X,N).

¬(hasChild(john,X) ∧ name(X,N))

¬(hasChild(john,X))

Try ✷{X1 ← alice}

Try ✷{X2 ← bob}

¬name(X,N)

for X1 and X2:

X1

¬ name(alice,N)

N1 ←“Alice”

X2

¬ name(bob,N)

N2 ←“Bob”

• Note: one could try close the right branch with X0 ←john and N0 ←“John”, but for that,
the left branch will not close.

• Internal Strategy: don’t explicitly close with Xi.
Instead prepare complete tableau and compute closing relational algebra expression:
(σ[$1=john](hasChild($1,X))) × name(X,N)

512

DL TABLEAUX: EXAMPLES

Consider the “Only female children” example from Slide 453.

TwoChildrenParent(sue)
hasChild(sue,ann)

Female(ann)
hasChild(sue,barbara)

Female(barbara)
ann 6= barbara

TwoChildrenParent ≡ ∃2 child.⊤
OnlyFemaleChildrenParent ≡ Person ⊓ ∀child.Female

Query: ?- OnlyFemaleChildrenParent(X).

[¬ OnlyFemaleChildrenParent(X)]

¬(Person ⊓ ∀child.Female(X))

¬ Person(X)

try ✷{X ← sue}
¬ (∀child.Female)(sue)

(∃ child).(¬ Female)(sue)

hasChild(sue,y)

¬ Female(y)

count Sue’s children=3: ann,barbara,y

ann=barbara
✷

ann=y

✷ ¬ Female(ann)

barbara=y

✷ ¬ Female(barbara)

• the negated query can be
used for leading the expan-
sion, but not for closing the
tableau.

• Instead of X, all other per-
sons are also tried to derive
answers:
John: tableau does not close
(Alice)
Kate: tableau does not close
(Sue)

513

DL TABLEAUX: A MORE INVOLVED EXAMPLE

Consider again the Escher Stairs example
(Slide 495).

(1) Corner = AllDifferent(a,b,c)
(2) cardinality: Corner ⊑ ∃1 higher.⊤
(3) domain: Corner ⊒ ∃ higher.⊤
(4) range: ⊤ ⊑ ∀ higher.Corner
(5) AntiSymmetric(higher)
(6) Irreflexive(higher)
(7) higher(a,b)

Query: ?- higher(X,Y).

[¬ higher(X,Y)]

First Answer Candidate:
with (7) X←a, Y← b

Try further answers ...

• The negated query can be used for lead-
ing the expansion, but not for closing the
tableau. The first answer candidate is
higher(a,b) – which was given in the in-
put.

• Show that the developing model is con-
sistent,

• and try to find additional answer candi-
dates.

(2) can be applied for any constant occurring in the branch.

• Choose “b” since it is already used in another fact and search for further answers in this
model.

514

Escher stairs tableau: continue with (2) for b

(1) Corner = AllDifferent(a,b,c)
(2) cardinality: Corner ⊑ ∃1 higher.⊤
(4) range: ⊤ ⊑ ∀ higher.Corner
(5) AntiSymmetric(higher)
(6) Irreflexive(higher)
(7) higher(a,b)

[¬ higher(X,Y)]

apply (2) for b:

¬ Corner(b)

✷

(8) ∃1 higher.⊤(b)

from (8): (9) higher(b,e)

next: range of “higher” derives that e is a corner:

(4) ⊤ ⊑ ∀ higher.Corner

¬⊤(b)
✷

(10) ∀ higher.Corner(b)

(11) Corner(e)

e must be one of a,b,c

e=a

higher(b,a)

✷ (Antisymm.)

e=b

higher(b,b)

✷ (Irrefl.)

e=c

(12) higher(b,c)

Answer candidate: (b,c)

• Expand the branch (=model) by inves-
tigating b.

• This yields another answer candidate.

• Still, it must be checked that the
branch is not inconsistent.

• Further answers will be found.

515

Escher stairs tableau: continue with (2) for c

(1) Corner = AllDifferent(a,b,c)
(2) cardinality: Corner ⊑ ∃1 higher.⊤
(4) range: ⊤ ⊑ ∀ higher.Corner
(5) AntiSymmetric(higher)
(6) Irreflexive(higher)
(7) higher(a,b)

(12) higher(b,c)
[¬ higher(X,Y)]

continue with (2) for c

¬ Corner(c)
✷

(13) ∃1 higher.⊤(c)

from (13): (14) higher(c,f)

next: range of “higher” derives that f is a corner:

(4) ⊤ ⊑ ∀ higher.Corner

¬⊤(c)
✷

(15) ∀ higher.Corner(c)

(16) Corner(f)

f must be one of a,b,c

f=a
higher(c,a)

Answer: (c,a)

[⋆]

f=b
higher(c,b)

✷ (Antisymm.)

f=c
higher(c,c)

✷ (Irrefl.)

• The branch [⋆] cannot be closed.

• The set of formulas on this branch
is consistent and describes a
model.

• The answers to ?- higher(X,Y) in
this model are (a,b), (b,c), and
(c,a).

516

REQUIREMENTS ON (NOT ONLY DL) TABLEAU STRATEGIES

• select most promising formula to be expanded next

– based on coincident constants,

– “selectivity” of conditions,

– α-rules non-branching before β-rules (branching).

• non-closing branches: know when to stop and return answer matches

– “saturated” branches: expansion does not add new formulas,

– do not expand irrelevant formulas at all.

517

DL TABLEAUX: SO FAR, SO GOOD ...

Consider the axiom
Person ⊑ ∃hasParent.Person

The tableau generation does not terminate.

Blocking

• a constant s2 is introduced as an existential filler from expanding a fact about constant s1,

• the knowledge about s1 and s2 is saturated (i.e., nothing new about them can be derived),

• and the same facts are known about s1 and s2 except the above existential chain,

• then block s2 from application of the existential formula (which would just create another
same thing).

• Such blocking can be done for every existentially introduced thing, and it has only to be
dropped if differences between it and its “predecessor” are derived.

• Such ontologies can be used. Queries only return instances in the “relevant” finite portion.

518

BLOCKING

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla#>.
:kate a :Person; :name "Kate"; :hasChild :john.
:john a :Person; :name "John"; :hasChild :alice.
:alice a :Person; :name "Alice".
:hasChild rdfs:domain :Parent;

owl:inverseOf :hasParent.
:Person rdfs:subClassOf
[a owl:Restriction; owl:onProperty :hasParent; owl:cardinality 2].

:Parent owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

:Grandparent owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Parent].

:HasParent owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasParent; owl:someValuesFrom owl:Thing].

[Filename: RDF/infinite-parents.n3]

519

Blocking (cont’d)

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla#>
select ?A ?B ?C ?R ?X
from <file:infinite-parents.n3>
where {{?A a :Parent} UNION

{?B a :Grandparent} UNION
{?C a :HasParent} UNION ## kate has a parent ...
{:hasParent rdfs:range ?R} UNION
{:kate :parent ?X}} # ... which is not output

[Filename: RDF/infinite-parents.sparql]

• The tableau strategy of pellet correctly blocks the generation of (useless) blank nodes.

• Note: when trying to count “how many persons must exist”, or “can we prove that at least 10
persons exist” would require to exclude that there is a cycle in the parents’ chain.

520

EXERCISE

Write RDF/OWL instances:

• John has two children in school, they are in the 3nd and 5th year. Children in the first year
are 6 years old, those in the 2nd year are 7 years old, and so on. There are 12 years of
school.

• Alice is a daugther of John. She is 10 years old.

• an “ideal family” consists of a father, a mother, and they have 2 children, a son and a
daughter, and a dog.

• John’s family is an “ideal family”.

• Bob is John’s son.

Feed them into the Jena tool, activate the reasoner.

• How old is Bob?

• which of the above information can be omitted without losing information how old Bob is?

521

9.10 Open World and Closed World:
OWL/DL/Tableaux/Logic and SPARQL

• OWL/DL reasoning: OWA.
Everything that can neither be proven nor disproven is unknown

• SPARQL queries/algebraic evaluation: CWA
BGPs that do not match (not proven to be true, i.e. false or unknown) are considered as
“no answer”

SPARQL CWA AND OWL OWA: POSSIBLE – IF NOT IMPOSSIBLE

⇒ Use SPARQL to check what cannot be proven by using FILTER NOT EXISTS { query }:
If the negation of some formula ϕ cannot be proven – then ϕ is at least possible, i.e, there
exists a model that makes ϕ true.

• Limited expressiveness ¬ϕ must be OWL-DL-expressible.
(means: wrt. stable models [Deductive Databases Lecture], where any possible solution
can be described)

• Consider again Slide 398 for an earlier example.

522

SPARQL NOT EXISTS { ¬ϕ } for checking possibility of ϕ

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:Childless owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:maxCardinality 0]).
:Parent owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]).
:john a :Person; :hasChild :alice, :bob.
:alice a :Person. :bob a :Person. [Filename: RDF/childless-small.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix : <foo://bla#>
select ?X ?C
from <file:childless-small.n3>
where { ?X a :Person . ?C a owl:Class; rdfs:subClassOf :Person

FILTER NOT EXISTS {?X a ?C}} [Filename: RDF/childless-small.sparql]

• John: only possible that he is a parent;
for alice and bob, it is possible to be a parent or to be childless.

523

SPARQL CWA AND OWL OWA: POSSIBLE – IF NOT IMPOSSIBLE: A
SCENARIO

• three rooms: bedroom, livingroom, guestroom

• some furniture: beds, a wardrobe, tables, chairs

• specification how many of these furniture can be placed in the rooms

• task: find out what can be placed where

524

Scenario

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://rooms#>.
:in a owl:ObjectProperty, owl:FunctionalProperty; owl:inverseOf :has;

rdfs:domain :Furniture; rdfs:range :Room.
:Room owl:oneOf (:bedroom :livingroom :guestroom).
[] a owl:AllDifferent; owl:members (:bedroom :livingroom :guestroom).
:bedroom a :Room,

[a owl:Restriction; owl:onProperty :has; owl:onClass :Bed; owl:qualifiedCardinality 1],
[a owl:Restriction; owl:onProperty :has; owl:onClass :Wardrobe; owl:qualifiedCardinality 1],
[a owl:Restriction; owl:onProperty :has; owl:onClass :Chair; owl:qualifiedCardinality 1],
[a owl:Restriction; owl:onProperty :has; owl:onClass :Table; owl:maxQualifiedCardinality 0].

:bedroom :has :bed1 . # comment in or out ...
:guestroom a :Room,

[a owl:Restriction; owl:onProperty :has; owl:onClass :Table; owl:maxQualifiedCardinality 0].
:livingroom a :Room,

[a owl:Restriction; owl:onProperty :has; owl:onClass :Bed; owl:maxQualifiedCardinality 0],
[a owl:Restriction; owl:onProperty :has; owl:onClass :Chair; owl:qualifiedCardinality 4].

:Furniture a owl:Class;
owl:disjointUnionOf (:Bed :Wardrobe :Table :Chair);
owl:equivalentClass [a owl:Restriction; owl:onProperty :in; owl:cardinality 1].

:Bed owl:oneOf (:bed1 :bed2 :bed3). ### one in bedroom, none in livingr. -> two in guestroom
525

:Bed owl:oneOf (:bed1 :bed2 :bed3). ### one in bedroom, none in livingr. -> two in guestroom
[] a owl:AllDifferent; owl:members (:bed1 :bed2 :bed3).
:Wardrobe owl:oneOf (:wr1).
:Table owl:oneOf (:t1). ### only one. must be in livingroom -> no in bedroom.
:Chair owl:oneOf (:c1 :c2 :c3 :c4 :c5).
[] a owl:AllDifferent; owl:members (:c1 :c2 :c3 :c4 :c5).

one must be in bedroom, 4 in livingroom, no one remains for guestroom

:InBedroom a owl:Class; owl:equivalentClass [a owl:Restriction;
owl:onProperty :in; owl:hasValue :bedroom].

:InGuestroom a owl:Class; owl:equivalentClass [a owl:Restriction;
owl:onProperty :in; owl:hasValue :guestroom].

:InLivingroom a owl:Class; owl:equivalentClass [a owl:Restriction;
owl:onProperty :in; owl:hasValue :livingroom].

:NotInBedroom a owl:Class; owl:equivalentClass
[owl:intersectionOf (:Furniture [owl:complementOf :InBedroom])].

:NotInLivingroom a owl:Class; owl:equivalentClass
[owl:intersectionOf (:Furniture [owl:complementOf :InLivingroom])].

:NotInGuestroom a owl:Class; owl:equivalentClass
[owl:intersectionOf (:Furniture [owl:complementOf :InGuestroom])].

for the queries:
:RoomWithChair owl:equivalentClass

[a owl:Restriction; owl:onProperty :has; owl:someValuesFrom :Chair].
:guestroom a :RoomWithChair. ## makes it inconsistent
:RoomWithoutChair owl:equivalentClass [a owl:Restriction;

owl:onProperty :has; owl:onClass :Chair; owl:maxQualifiedCardinality 0].
:RoomWithTwoBeds owl:equivalentClass [a owl:Restriction;

owl:onProperty :has; owl:onClass :Bed; owl:qualifiedCardinality 2].

[Filename: RDF/rooms.n3]

526

Scenario (Cont’d)
prefix : <foo://rooms#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix owl: <http://www.w3.org/2002/07/owl#>
select ?X ?Room ?InR ?Y ?InterpretAsMaybeInR
from <file:rooms.n3>
where {{ ?X :in ?Room} UNION

{ ?X a :Furniture, ?InR . ?InR rdfs:subClassOf :Furniture .
FILTER contains(str(?InR),"In")}

UNION
{ ?Y a :Furniture . ?NotInR rdfs:subClassOf :Furniture .

FILTER contains(str(?NotInR),"NotIn") .
FILTER NOT EXISTS { ?Y a ?NotInR .}
bind (?NotInR as ?InterpretAsMaybeInR)

}}
order by ?R ?InR ?NotInR

[Filename: RDF/rooms.sparql]

• The table must be in the livingroom,

• among bed1, bed2, bed3, one is in the bedroom and two are in the guestroom.

527

Scenario (Cont’d)

• are there two beds in the guestroom? (yes)

• is it possible that there is some chair in the guestroom?
(no - it can be derived that the guestroom is a room without chair)

• is it possible that chair1 is in the bedroom? (yes)

prefix : <foo://rooms#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix owl: <http://www.w3.org/2002/07/owl#>
select ?A1
from <file:rooms.n3>
where { { bind('2BedsInGuestroom' AS ?A1) . :guestroom a :RoomWithTwoBeds }

UNION { bind('NoChairInGuestroom' AS ?A1) . :guestroom a :RoomWithoutChair }
UNION { bind('c1InBedroom' AS ?A1) . { :c1 :in :bedroom }}
UNION { bind('maybeC1InBedroom' AS ?A1) .

FILTER NOT EXISTS { :c1 :in :bedroom }}}
[Filename: RDF/rooms2.sparql]

528

9.11 Rules in DL: Hybrid Reasoning

• Early Approaches: Donini, Lenzerini et al 1991; Levy, Rousset 1996 (CARIN):
rather disappointing safety and decidability results:
roughly, due to objects implicitly (existentially) assured by DL specifications.

• Newer investigations in Semantic Web context:
DLV (Eiter et al 2004), DL+log (Rosati 2006); Motik, Sattler, Studer 2005; Lukasiewicz
2007: more detailed syntactical and structural constraints.

• SWRL (Semantic Web Rule Language; 2004):

– Full Power of OWL-DL, allows for specifying undecidable settings, high computational
complexity,

– building upon the basic RULE-ML ontology for describing rules (rule; head, body;
different kinds of atoms),

– DL-safe rules (decidable) supported by Pellet: restriction in syntax and in semantics
variables only applied to named resources (prunes the tableau; roughly ignoring all
only existentially known objects).

• recall that SPARQL also returns only answers bound to explicitly known nodes (cf.
Slide 417).

529

SIMPLE RULE EXAMPLE: UNCLE

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix swrl: <http://www.w3.org/2003/11/swrl#>.
@prefix : <foo://bla#>.
:sue :hasChild :barbara; :hasSibling :john.
:john :name "John"; :hasChild :alice, :bob; :hasSibling :sue.
:x a swrl:Variable.
:y a swrl:Variable.
:z a swrl:Variable.
:uncleAuntRule a swrl:Imp;
swrl:head ([a swrl:IndividualPropertyAtom;

swrl:propertyPredicate :hasUncleAunt;
swrl:argument1 :x ; swrl:argument2 :z]);

swrl:body ([a swrl:IndividualPropertyAtom;
swrl:propertyPredicate :hasChild;
swrl:argument1 :y ; swrl:argument2 :x]

[a swrl:IndividualPropertyAtom;
swrl:propertyPredicate :hasSibling;
swrl:argument1 :y ; swrl:argument2 :z]).

[Filename: RDF/uncle-rule-swrl.n3]

prefix : <foo://bla#>
select ?X ?U
from <file:uncle-rule-swrl.n3>
where {?X :hasUncleAunt ?U}

[Filename: RDF/uncle-rule-swrl.sparql]

530

DL-SAFE RULES CONSIDER ONLY NAMED RESOURCES

• analogous to SPARQL queries and owl:hasKey (cf. Slide 404)

• only positive atoms in the body (then OWA vs. CWA does not play any role)

⇒ work only on a finite instantiated subgraph of the whole DL model

⇒ does not interfere with the blocking, and

⇒ does not break decidability.

531

Comparison: SWRL Rule, Property Chain, SPARQL, DL

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix swrl: <http://www.w3.org/2003/11/swrl#>.
@prefix : <foo://bla#>.
:john :hasChild :bob; :hasSibling :paul, [].
:hasSibling a owl:SymmetricProperty.
:paul a [a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

:uncleRule a swrl:Imp;
swrl:head ([a swrl:IndividualPropertyAtom; swrl:propertyPredicate :uncle1;

swrl:argument1 :y ; swrl:argument2 :z]);
swrl:body ([a swrl:IndividualPropertyAtom; swrl:propertyPredicate :hasChild;

swrl:argument1 :x ; swrl:argument2 :y]
[a swrl:IndividualPropertyAtom; swrl:propertyPredicate :hasSibling;

swrl:argument1 :x ; swrl:argument2 :z]).
:x a swrl:Variable. :y a swrl:Variable. :z a swrl:Variable.

[owl:propertyChain ([owl:inverseOf :hasChild] :hasSibling)] rdfs:subPropertyOf :uncle2.
:Uncle owl:equivalentClass [a owl:Restriction; owl:onProperty :hasSibling;

owl:someValuesFrom [a owl:Restriction; owl:onProperty :hasChild;
owl:minCardinality 1]]. [Filename: RDF/uncle-comparison.n3]

532

DL-Safe Rules consider only named Resources (cont’d)

prefix : <foo://bla#>
select ?N ?U1 ?U2 ?isU
from <file:uncle-comparison.n3>
where {{?N :uncle1 ?U1} union {?N :uncle2 ?U2}

union {?isU a :Uncle}}
[Filename: RDF/uncle-comparison.sparql]

• blank nodes are considered. Paul and a bnode (John’s other brother) are Bob’s uncles.

• implicitly known nodes are not considered: John’s brother Paul has a child (so John is
also an uncle) which is only implicitly known.

533

BUILT-IN SWRL ATOMS

SWRL provides some built-in atoms for owl:sameAs, owl:differentFrom etc.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix swrl: <http://www.w3.org/2003/11/swrl#>.
@prefix : <foo://bla#> .

:name a owl:FunctionalProperty; a owl:DatatypeProperty.
:john a :Person; :name "John"; :hasChild :alice, :bob.
:alice a :Person; :name "Alice".
:bob a :Person; :name "Bob".

:x a swrl:Variable. :y a swrl:Variable. :z a swrl:Variable.
:r a swrl:Imp;

swrl:head ([a swrl:IndividualPropertyAtom; swrl:propertyPredicate :hasSibling;
swrl:argument1 :y ; swrl:argument2 :z]);

swrl:body ([a swrl:IndividualPropertyAtom; swrl:propertyPredicate :hasChild;
swrl:argument1 :x ; swrl:argument2 :y]

[a swrl:IndividualPropertyAtom; swrl:propertyPredicate :hasChild;
swrl:argument1 :x ; swrl:argument2 :z]

[a swrl:DifferentIndividualsAtom;
swrl:argument1 :y ; swrl:argument2 :z]). [Filename: RDF/sibling-rule.n3]

534

Built-In SWRL atoms (Cont’d)

prefix : <foo://bla#>
select ?X ?CH ?SIB
from <file:sibling-rule.n3>
where {{?X :hasChild ?CH} union {?X :hasSibling ?SIB}}

[Filename: RDF/sibling.sparql]

535

EVALUATION OF DL REASONING VS SWRL RULES

• DL Reasoning considers implicitly known resources (= graph nodes) and handles them in
the tableau via blocking:

– Structurally identical graph fragments are not further explored. Due to DL’s locality
principle and tree structure of the model, the model can be kept finite.

• Rules are also incorporated into the tableau, but since they do not have the tree property,
blocking would not be sufficient for keeping the model finite when implicitly known
resources are considered.

⇒ if something “important” about an implicitly known node can only be derived by a rule, it is
not discovered (cf. next example).

536

DL-SAFETY: SWRL RULES DO NOT CONSIDER IMPLICIT RESOURCES

(see Turtle fragment next slide)

• Rule: all persons believe in God,

• jack has a blank node child _:b0 who is a parent,

• _:b0 is a believer (by the rule),

• as the grandchild is a person, application of the rule would result in the fact that it believes
in God, i.e. it is a believer, which should make _:b0 a ParentOfBeliever.

• how to show that the grandchild is not considered by the rule: add a statement that _:b0
is not parent of any believer.

• run “classify” for the n3:

– the ontology is consistent,

– _:b0 is accepted to be a :NotParentOfBeliever.

537

SWRL Rules and DL-Safety: Example

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix swrl: <http://www.w3.org/2003/11/swrl#>.
@prefix : <foo://bla#> .
:jack a :Person; :hasChild [a :Person; a :Parent; a :NotParentOfBeliever].
:Parent owl:equivalentClass

[a owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Person].
:Believer owl:equivalentClass

[a owl:Restriction; owl:onProperty :believes; owl:minCardinality 1].
:ParentOfBeliever owl:equivalentClass

[a owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Believer].
:NotParentOfBeliever owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:onClass :Believer; owl:cardinality 0].

:x a swrl:Variable.
:r a swrl:Imp;

swrl:head ([a swrl:IndividualPropertyAtom;
swrl:propertyPredicate :believes;
swrl:argument1 :x ; swrl:argument2 :god]);

swrl:body ([a swrl:ClassAtom; swrl:classPredicate :Person;
swrl:argument1 :x]). [Filename: RDF/hidden-prop.n3]

538

SWRL Rules and DL-Safety: Example (Cont’d)

prefix : <foo://bla#>
select ?B ?PB ?NPB
from <file:hidden-prop.n3>
where {{?B a :Believer} union {?PB a :ParentOfBeliever}

union {?NPB a :NotParentOfBeliever}}
[Filename: RDF/hidden-prop.sparql]

539

RULE EXAMPLE: BIG CITIES

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix swrl: <http://www.w3.org/2003/11/swrl#>.
@prefix : <foo://bla/>.

mon:population rdfs:range xsd:int; a owl:FunctionalProperty. ## all cities are different.
:Million a rdfs:Datatype; owl:onDatatype xsd:int; owl:withRestrictions (:m1).
_:m1 xsd:minInclusive 1000000 .

:ProvinceWithBigCity a owl:Class. # otherwise sparql answer empty.
:ProvinceWithTwoBigCities a owl:Class. # otherwise sparql answer empty.
:CountryWithTwoBigCities a owl:Class. # otherwise sparql answer empty.

:HasBigPopulation owl:equivalentClass [a owl:Restriction;
owl:onProperty mon:population; owl:someValuesFrom _:Million].

:BigCity owl:intersectionOf (mon:City :HasBigPopulation).

[Filename: RDF/bigcities-base.n3]

540

First: the simplest rule: a country where no provinces are contained in the database:

Cw2BCs(X) : −Country(X)∧BigCity(Y)∧BigCity(Z)∧hasCity(X,Y)∧hasCity(X,Z)∧Y 6= Z.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
@prefix swrl: <http://www.w3.org/2003/11/swrl#>.
@prefix : <foo://bla/>.

:CountryNoProvsRule a swrl:Imp;
swrl:head ([a swrl:ClassAtom; swrl:classPredicate :CountryWithTwoBigCities;

swrl:argument1 :x]);
swrl:body ([a swrl:ClassAtom; swrl:classPredicate mon:Country; swrl:argument1 :x]

[a swrl:ClassAtom; swrl:classPredicate :BigCity; swrl:argument1 :y]
[a swrl:ClassAtom; swrl:classPredicate :BigCity; swrl:argument1 :z]
[a swrl:IndividualPropertyAtom; swrl:propertyPredicate mon:hasCity;

swrl:argument1 :x ; swrl:argument2 :y]
[a swrl:IndividualPropertyAtom; swrl:propertyPredicate mon:hasCity;

swrl:argument1 :x ; swrl:argument2 :z]
[a swrl:DifferentIndividualsAtom; swrl:argument1 :y ; swrl:argument2 :z]).

[Filename: RDF/bigcities-country-noprovs-rule.n3]

541

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
@prefix swrl: <http://www.w3.org/2003/11/swrl#>.
@prefix : <foo://bla/>.

:x a swrl:Variable. :y a swrl:Variable. :z a swrl:Variable.
:ProvBigCityRule a swrl:Imp;
swrl:head ([a swrl:ClassAtom; swrl:classPredicate :ProvinceWithBigCity; swrl:argument1 :x]);
swrl:body ([a swrl:ClassAtom; swrl:classPredicate mon:Province; swrl:argument1 :x]

[a swrl:ClassAtom; swrl:classPredicate :BigCity; swrl:argument1 :y]
[a swrl:IndividualPropertyAtom; swrl:propertyPredicate mon:hasCity;
swrl:argument1 :x ; swrl:argument2 :y]).

:TwoProvsRule a swrl:Imp;
swrl:head ([a swrl:ClassAtom; swrl:classPredicate :CountryWithTwoBigCities; swrl:argument1 :x]);
swrl:body ([a swrl:ClassAtom; swrl:classPredicate mon:Country; swrl:argument1 :x]

[a swrl:ClassAtom; swrl:classPredicate :ProvinceWithBigCity; swrl:argument1 :y]
[a swrl:ClassAtom; swrl:classPredicate :ProvinceWithBigCity; swrl:argument1 :z]
[a swrl:IndividualPropertyAtom; swrl:propertyPredicate mon:hasProvince;
swrl:argument1 :x ; swrl:argument2 :y]

[a swrl:IndividualPropertyAtom; swrl:propertyPredicate mon:hasProvince;
swrl:argument1 :x ; swrl:argument2 :z]

[a swrl:DifferentIndividualsAtom; swrl:argument1 :y ; swrl:argument2 :z]).

[Filename: RDF/bigcities-2provs-rules.n3]

542

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
@prefix swrl: <http://www.w3.org/2003/11/swrl#>.
@prefix : <foo://bla/>.

:Prov2BigCitiesRule a swrl:Imp;
swrl:head ([a swrl:ClassAtom; swrl:classPredicate :ProvinceWithTwoBigCities; swrl:argument1 :x]);
swrl:body ([a swrl:ClassAtom; swrl:classPredicate mon:Province; swrl:argument1 :x]

[a swrl:ClassAtom; swrl:classPredicate :BigCity; swrl:argument1 :y]
[a swrl:ClassAtom; swrl:classPredicate :BigCity; swrl:argument1 :z]
[a swrl:IndividualPropertyAtom; swrl:propertyPredicate mon:hasCity;
swrl:argument1 :x ; swrl:argument2 :y]

[a swrl:IndividualPropertyAtom; swrl:propertyPredicate mon:hasCity;
swrl:argument1 :x ; swrl:argument2 :z]

[a swrl:DifferentIndividualsAtom; swrl:argument1 :y ; swrl:argument2 :z]).

:Prov2CRule a swrl:Imp;
swrl:head ([a swrl:ClassAtom; swrl:classPredicate :CountryWithTwoBigCities; swrl:argument1 :x]);

swrl:body ([a swrl:ClassAtom; swrl:classPredicate mon:Country; swrl:argument1 :x]
[a swrl:ClassAtom; swrl:classPredicate :ProvinceWithTwoBigCities; swrl:argument1 :y]
[a swrl:IndividualPropertyAtom; swrl:propertyPredicate mon:hasProvince;

swrl:argument1 :x ; swrl:argument2 :y]).

[Filename: RDF/bigcities-prov-2bigcities-rules.n3]

543

Rule Example: Big Cities (Cont’d)

prefix : <foo://bla/>
prefix mon: <http://www.semwebtech.org/mondial/10/meta#>
select ?C ?BC ?P1 ?P2 ?X
from <file:bigcities-base.n3>
from <file:bigcities-2provs-rules.n3>
from <file:bigcities-prov-2bigcities-rules.n3>
from <file:bigcities-country-noprovs-rule.n3>
#from <file:dummy-cities.n3> ## a small test setting
from <file:mondial-europe.n3> ## europe is more than sufficient =:(
from <file:mondial-meta.n3>
where {# {?BC a :BigCity} UNION

{?X a mon:Country; mon:carCode ?C; mon:hasCity ?BC . ?BC a :BigCity} UNION
{?P1 a :ProvinceWithBigCity} UNION
{?P2 a :ProvinceWithTwoBigCities} UNION
{?X a :CountryWithTwoBigCities}}

[Filename: RDF/bigcities-by-rules.sparql]

544

