83000000 @ |
rdfs:subClassOf

:population isa

rdfs:subClassOf

:name
:hasCapital

o @ :hasCapital

rdfs:range

P

rdfs:domain

Isa

—isa

N

rdfs:range

—

owl:Class

isa
:name
AN

rdf:Property

xs:string —isa owl:Datatype

Yesterday: "Symbolic Reasoning"

Background: Philosophical logics, mathematical logics, model theory aspects:
human reasoning about properties of the logic).

Each logic, and thus also First-Order Logic provides a framework
that can be used for symbolic reasoning:

FOL Formulas are strings, FOL reasoning are algorithms that
work on their parse trees.
=> symbolic reasoning: all about Syntax, not Semantics

Formulas are evaluated wrt. first-order-logic
structures/interpretations

Syntax: the symbols used for writing formulas:
* logical symbols: A, 3, ...
* variables: z, y, ...

* depending on the application: predicate
symbols and function symbols, "signature" 3

for mondial: X = {Country, City, name, hasCapital, ...}

FOL Structure: S = (I, D)
D is the domain ... the things in the real world.
I maps the symbols from i to the domain ...

Example: our "real-world-application" contains a (green) frog, and strings and numbers:
D ={£ } U Strings U Numbers ...

Signature to talk about the frog and its properties: (1-ary and 2-ary predicates and constant symbols)
¥ = { Frog/1, Green/1, name/2, bob/c0 }
Interpret the symbols in OUR structure/model S (=current situation):

I (bob) = (£2) (an element from D)
I (name) ={ (£ "Bob"), ...} (a set of 2-tuples over D)
I (Frog)={(&), ...} (a set of 1-tuples over D)

Knowledge base IC: all frogs are green.
Vx : Frog(x) — Green(x)

Our S must be a model of IC:
Tableau calculus: what can we derive?

Vx : Frog(x) — Green(x)

Frog(bob)
Frog(X1) — Green(X1) (introduce a tableau variable X1)
= Frog (X1) V Green(X1) equivalent
/ \ open two branches
—Frog(X1) Green(X1)

[0 X1 < bob » Green(bob)

=> conclusion by reasoning: bob must be green in our S
=> I(Green) D I(bob)
I(Green) 2 { (&)}

I practically is a database, containing unary and binary tables:

(note: DB is only on the syntax level, so bob <-> e)

name Frog

bob "Bob" bob

(the constant bob/cO is like an object identifier)

