
Semistructured Data and XML 15

3. Unit: XQuery & Mondial

Information about the XML course, recommended tools as well as the Mondial Database, is found under

http://www.stud.informatik.uni-goettingen.de/xml-lecture

The following exercises use the Mondial database and should be solved using
XQuery.

Exercise 3.1 (Mondial - Maximum Population) Give name and population of the country
with the highest population.

for $ctr in /mondial/country

where($ctr/population = max(/mondial/country/population))

return

<result>

{$ctr/name}

{$ctr/population}

</result>

(: the where-clause can also be moved into the XPath part,

although it is harder to understand then :)

for $ctr in /mondial/country[population = max(/mondial/country/population)]

return

<result>

{$ctr/name}

{$ctr/population}

</result>

(: or, because it is only one country, also a ’let’ can be used: :)

let $ctr := /mondial/country[population = max(/mondial/country/population)]

return

<result>

{$ctr/name}

{$ctr/population}

</result>

(: or as XPath :)

//country[population = max(//country/population)]/(name|population)

(: Result: China 1210004956 :)

Exercise 3.2 (Mondial - order organizations by inhabitants)

For each organization, return its name and the sum of the population of its members (in descending
order, ignore different member types).

Semistructured Data and XML 16

for $org in //organization

let $sum := sum($org/members/id(@country)/population[1])

order by $sum descending

return

<result>

<org>{$org/name}</org>

<pop>{$sum}</pop>

</result>

(: a typical for-let-combination :)

(: 168 hits (including organizations where no member are stored, otherwise 152) :)

(: first result: International Olympic Committee, pop = 5741497820 :)

Exercise 3.3 (Mondial - Sunrise in Dakar)

Consider the moment of sunrise in Dakar on 21st of September. Which is the city where the sun
rises next?

let $cities :=

for $c in /mondial//city

where (number($c/longitude) < number(/mondial//city[name = ’Dakar’]/longitude))

return $c

for $city in $cities

where $city/longitude = max($cities/longitude)

return $city

(: another nice example for preparing using a ’let’ :)

(: Ergebnis: Hafnarfjoerdur,IS,Iceland,12000,-22,64 :)

Exercise 3.4 (Mondial - Sharing Waters with Russia)

Which lakes, seas and rivers does Russia share with exactly one other country?

for $water in /mondial//(lake|river|sea)

where $water/located/id(@country)/name="Russia"

and count($water/located/id(@country)) = 2

order by $water/name

return

element {$water/name()} {$water/name/text()}

(: result: 9 items: Argun,Dnepr,Irtysch,Ischim, ... :)

(: ...Ozero Chanka,Sea of Azov,Sea of Japan,Tobol,Ural :)

(: note the explicit result element constructor :)

(: Short in XPath :)

/mondial/(sea|river|lake)[located/@country="R"

and count (located) = 2]/name/text()

Exercise 3.5 (Mondial - European Countries and Seas)

Compute all pairs of european countries that are adjacent to the same set of seas.

Semistructured Data and XML 17

let $europcountries := /mondial/country[encompassed/id(@continent)/name="Europe"]

for $c1 in $europcountries

let $seas1 := /mondial/sea[located/@country = $c1/@car_code]/name

for $c2 in $europcountries

let $seas2 := /mondial/sea[located/@country = $c2/@car_code]/name

where $c1/name/text() < $c2/name/text()

and exists($seas1)

and deep-equal($seas1,$seas2)

return <result>{$c1/name} {$c2/name} {$seas1}</result>

(: it is also possible to compare the sets item-by-item instead of

using deep-equal (which deep-compares the complete XML sequences

bound to the variables)

Note the implicit set-based comparisons in the ’every’ parts

with $seas1 and $seas2 :)

let $europcountries := /mondial/country[encompassed/id(@continent)/name="Europe"]

for $c1 in $europcountries

let $seas1 := /mondial/sea[located/@country = $c1/@car_code]/name

for $c2 in $europcountries

let $seas2 := /mondial/sea[located/@country = $c2/@car_code]/name

where $c1/name/text() < $c2/name/text()

and (every $s1 in $seas1 satisfies $s1 = $seas2)

and (every $s2 in $seas2 satisfies $s2 = $seas1)

return <result>{$c1/name} {$c2/name} {$seas1}

</result>

(: faster solution: compute seas only once :)

let $tmp :=

for $c in /mondial/country[encompassed/@continent="europe"]

return

<country>

{ $c/name }

<seas>

{ /mondial/sea[id(@country) is $c]/name }

</seas>

</country>

for $c1 in $tmp, (: runs over the <country> elements in $tmp :)

$c2 in $tmp

where $c1/name/text() < $c2/name/text()

and $seas1/name and $c2/seas/name (: only the nonempty ones are of interest :)

and deep-equal($c1/seas,$c2/seas)

return <result>{$c1/name} {$c2/name} {$c1/seas}</result>

(: Med.Sea: MC/IT/SRB/AL/MAL/CY/GR

Baltic: PL/SF/LT/LV

North: B/NL

North+Baltic: D/S/DK :)

Exercise 3.6 (Mondial - The Caribbean)

Semistructured Data and XML 18

How many countries are adjacent to (or ecompassed by) the the Caribbean Sea? How much area
do they cover altogether?

let $countries := /mondial/sea[name="Caribbean Sea"]/located/id(@country)

return

<result>

{$countries/name}

<area> {sum($countries/@area)} </area>

</result>

(: result: 7 countries, 4375760 qkm (again, incomplete data mondial.xml) :)

Exercise 3.7 (“Every” and “Some” - a Comparison)
Consider again Exercise 3.30. Solve each of the below queries by using the “every ... satisfies” or
“some ... satisfies” construct. Give also an XPath 1.0 solution if possible. Discuss the alternative
variants.

• Give the names of all organizations that have no european member countries.

• Give the names of all organizations that have at least one european member country.

• Give the names of all organizations that have only european member countries.

• Give the names of all organizations where all european countries which are members of at least

2 organizations are members.

(: IMPORTANT: for ‘‘every’’, do not consider organizations

where no members are listed :)

(: no europeans: 45 results : [saxon: alle 3 Anfragen uebereinstimmend]

ACP OPANAL ABEDA ACC AFESD AL AMU AMF APEC ASEAN Mekong Group ANZUS

Caricom UDEAC BCIE CACM CP CAEU Entente EADB ESCWA CEEAC CEPGL ECOWAS

G-2 G-3 G-11 G-15 G-19 G-24 GCC IGADD LAES OAU OAPEC OECS OPEC RG

SAARC SPF Sparteca SACU SADC Mercosur WADB :)

/mondial/organization[members]

[not (members/id(@country)/encompassed/id(@continent)/name="Europe")]/name

/mondial/organization

[members and

(every $c in members/id(@country)/encompassed/id(@continent)

satisfies $c/name!="Europe")]/name

for $org in /mondial/organization[members]

let $con := $org/members/id(@country)/encompassed/id(@continent)

where every $c in $con/name/text() satisfies $c != "Europe"

return <answer>

{$org/name}

{$con}

</answer>

Semistructured Data and XML 19

(: some europeans: 108 results [saxon: alle 3 Anfragen uebereinstimmend] :)

/mondial/organization

[members/id(@country)/encompassed/id(@continent)/name="Europe"]/name

/mondial/organization

[some $c in members/id(@country)/encompassed/id(@continent)

satisfies $c/name="Europe"]/name

for $org in /mondial/organization

let $con := $org/members/id(@country)/encompassed/id(@continent)

where some $c in $con/name/text() satisfies $c = "Europe"

return <answer>

{$org/name}

{$con}

</answer>

(: only europeans: 8 hits [saxon: alle 3 Anfragen uebereinstimmend]

Benelux Economic Union

Central European Initiative

European Free Trade Association

European Investment Bank

European Union

Group of 9

Nordic Council

Nordic Investment Bank

Note: different results can be due to ‘‘only countries that are

completely in Europe’’ vs. countries that are at least partly in

Europe’’ :)

/mondial/organization

[members and

not (members/id(@country)/encompassed/id(@continent)/name != "Europe")]/name

/mondial/organization

[members and

(every $c in members/id(@country)/encompassed/id(@continent)

satisfies $c/name="Europe")]/name

for $org in /mondial/organization

let $con := $org/members/id(@country)/encompassed/id(@continent)

where $org/members and

(every $c in $con/name/text() satisfies $c = "Europe")

return <answer>

{$org/name}

{$con}

</answer>

Semistructured Data and XML 20

(: all europeans: 3 hits [saxon: beide Anfragen uebereinstimmend]

International Telecommunication Union

United Nations

World Intellectual Property Organization :)

let $europeancountries :=

/mondial/country[

count(id(@memberships)) > 1 and

encompassed/id(@continent)/name="Europe"]

for $org in /mondial/organization

where every $c in $europeancountries satisfies

$c = $org/members/id(@country)

return $org/name

for $org in /mondial/organization

where not

(/mondial/country[

count(id(@memberships)) > 1 and

encompassed/id(@continent)/name="Europe"

and not (.= $org/members/id(@country))])

return $org/name

(: here: NO WAY IN XPATH SINCE JOIN IS NEEDED INSIDE NOT/NOT) :)

(: THE FOLLOWING ILLUSTRATES THE PROBLEM :)

/mondial/organization

[not

(/mondial/country[

count(id(@memberships)) > 1 and

encompassed/id(@continent)/name="Europe"

and not (COUNTRY = ORG/members/id(@country))])]/name

Discussion:

• “some ... satisfies” is redundant since the XPath set comparison has implicit existential
semantics

• “every ... satisfies” is nice syntactic sugar, but can also be replaced by “not some (not

...)” or even “not (not ...)”. The latter is also the usual way to solve such things in SQL.

• the 4th query, there is no way to transform it into XPath because a join is needed in the inner
subquery.

Exercise 3.8 (Mondial - Population of Neighbors)

For all countries, give the sum of the population of all its neighbors.

for $c in /mondial/country

let $sum := sum($c/border/id(@country)/population)

return

<result>

{$c/name}

<neighbor_pop>{$sum}</neighbor_pop>

</result>

Semistructured Data and XML 21

(: Ergebnis: 260 countries

Albania 23257187

Andorra 97498564

Austria 175884037

note that for islands (which do not have neighbors), a ’0’ is explicitly

returned which is different from join-based SQL solutions where an

outer join must explicitly be forced :)

Exercise 3.9 (Mondial - Biggest Cities) For each country with at least 3 cities, compute
the sum of the inhabitants of the three biggest cities.

for $country in /mondial//country[count(.//city) > 2]

let $cities_pops :=

(for $c in $country//city[population]

let $pnum := number($c/population[1])

order by $pnum descending

return $c/population[1]

)

return

<result>

{$country/name}

<three-cities>

{sum($cities_pops[position()<=3])}

</three-cities>

</result>

(: - note that the intermediate result $cities_pops is an ordered

sequence of nodes

- take only cities that have a population entry :)

(: Result: 82 items, Albania, 314000 :)

(: In XML it is also possible to return the names of the largest three

cities, and the sum of their population: :)

(: xs:int used since fn:number does not work :)

for $country in /mondial//country[count(.//city) > 2]

let $cities :=

(for $c in $country//city[population]

order by xs:int($c/population[1]) descending

return $c

)

return

<result>

{$country/name}

<three-cities>

{$cities[position()=1]/name}

{$cities[position()=2]/name}

{$cities[position()=3]/name}

<sum>{sum($cities[position()<=3]/population)}</sum>

</three-cities>

</result>

Semistructured Data and XML 22

Exercise 3.10 (Mondial - Cities population above average)

Give all cities that have more inhabitants than the average of all cities in that country.

(: result: 565 items :)

for $country in /mondial/country[.//city/population]

let $cities := $country//city[population]

let $pops := $cities/population[1]

let $avg_pop := sum($pops) div count($cities)

let $bigcities := $country//city[number(./population[1]) >= number($avg_pop)]

return

<result>

<country>{$country/name/text()}</country>

<cities>{$bigcities/name}</cities>

<average>{$avg_pop}</average>

</result>

for $c in //country[count(city/population/text())=count(city)]

(: some countries have cities with two population numbers :)

let $avg := avg($c//city/population[1]/text())

return

<country>

{$c/name}

<avg>{$avg}</avg>

{

for $city in $c//city

where $city/population/text() > $avg

return

<city>

{$city/name}

{$city/population}

</city>}

</country>

Exercise 3.11 (User-defined Function: Functional Programming – Faculty) Write a re-
cursive function that computes the faculty of a natural number.

(:call saxonXQ faculty.xq x=5 :)

declare variable $x external;

declare function local:faculty($n as xs:integer) as xs:integer

{ if ($n=1) then 1

else $n* local:faculty($n - 1)

};

local:faculty($x)

