
Chapter 5
Query Languages: XPath
• Network Data Model: no query language; only some specific commands extending the

host language

• SQL – only for a flat data model, but a “nice” language
(easy to learn, descriptive, relational algebra as foundation, clean theory, optimizations)

• OQL: SQL with object-orientation and path expressions

• Lorel (OEM): extension of OQL

• F-Logic: navigation in a graph by path expressions with additional conditions
descriptive, complex.

192

REQUIREMENTS ON AN XML QUERY LANGUAGE

• suitable both for databases and for documents

• declarative: binding variables and using them

– rule-based, or

– SQL-style clause-based (which is in fact only syntactic sugar)

• binding variables in the rule body/selection clause:
suitable for complex objects

– navigation by path expressions, or

– patterns

• generation of structure in the rule head/generating clause

193

EVOLUTION OF XPATH

• when defining a query language, constructs are needed for addressing and accessing
individual elements/attributes or sets of elements/attributes.

• based on this addressing mechanism, a clause-based language is defined.

Early times of XML (1998)
different navigation formalisms of that kind:

• XSL Patterns (inside the stylesheet language)

• XQL (XML Query Language)

• XPointer (referencing of nodes/areas in an XML document)

used all the same basic idea with slight differences in the details:

• paths in UNIX notation

• conditions on the path

/mondial/country[@car_code=”D”]/city[population > 100000]/name

194

5.1 XPath – the Basics

1999: specification of the navigation formalism as W3C XPath.

• Base: UNIX directory notation

in a UNIX directory tree: /home/dbis/Mondial/mondial.xml
in an XML tree: /mondial/country/city/name

Straightforward extension of the URL specification:
http://.../dbis/Mondial/mondial.xml#mondial/country/city/name [XPointer until 2002]
http://.../dbis/Mondial/mondial.xml#xpointer(mondial/country/city/name) [XPointer now]

• W3C: XML Path Language (XPath), Version 1.0 (W3C Recommendation 16. 11. 1999)
http://www.w3.org/TR/xpath

• W3C: XPath 2.0 and XQuery 1.0 (W3C Recommendation 23. 1. 2007)
http://www.w3.org/TR/xquery

• Tools: see Web page

– XML (XQuery) database system “eXist”

– lightweight tool “saxonXQ” (XQuery)

195

XPATH: NAVIGATION, SIMPLE EXAMPLES

XPath is based on the UNIX directory notation:

• /mondial/country
addresses all country elements in MONDIAL,
the result is a set of elements of the form

<country code=“...”> ... </country>

• /mondial/country/city
addresses all city elements, that are direct subelements of country elements.

• /mondial/country//city
adresses all city elements that are subelements (in any depth) of country elements.

• //city
addresses all city elements in the current document.

• wildcards for element names:
/mondial/*/name
addresses all name elements that are grandchildren of the mondial elements
(different from /mondial//name which goes to arbitrary depth!)

196

... and now systematically:

XPATH: ACCESS PATHS IN XML DOCUMENTS

• Navigation paths

/step/step/. . . /step

are composed by individual navigation steps,

• the result of each step is a sequence of nodes, that serve as input for the next step.

• each step consists of

axis::nodetest [condition]*

– an axis (optional),

– a test on the type and the name of the nodes,

– (optional) predicates that are evaluated for the current node.

• paths are combined by the “/”-operator

• additionally, there are function applications

• the result of each XPath expression is a sequence of nodes or literals.

197

XPATH: AXES

Starting with a current node it is possible to navigate in an XML tree to several “directions” (cf.
xmllint’s “cd”-command).

In each navigation step

path/axis::nodetest [condition]/path

the axis specifies in which direction the navigation takes place. Given the sequence of nodes
that is addressed by path, for each node, the step is evaluated.

• Default: child axis: child::country ≡ country.

• Descendant axis: all sub-, subsub-, ... elements:
country/descendant::city
selects all city elements, that are contained (in arbitrary depth) in a country element.
Note: path //city actually also addresses all these city elements, but “//” is not the exact
abbreviation for “/descendant::” (see later).

198

XPATH: AXES

... another important axis:

• attribute axis:
attribute::car_code ≡ @car_code
wildcard for attributes: attribute::* selects all attributes of the current context node.

• and a less important:
self axis: self::city ≡ ./city
selects the current element, if it is of the element type city.

for the above-mentioned axes there are the presented abbreviations. This is important for
XSL patterns (see Slide 351):

XSL (match) patterns are those XPath expressions, that are built without the use of “axis::”
(the abbreviations are allowed).

199

XPATH: AXES

Additionally, there are axes that do not have an abbreviation:

• parent axis: //city[name=“Berlin”]/parent::country
selects the parent element of the city element that represents Berlin, if this is of the
element type country.
(only the parent element, not all ancestors!)

• ancestor: all ancestors:
//city[name=“Berlin”]/ancestor::country selects all country elements that are ancestors of
the city element that represents Berlin (which results in the Germany element).

• siblings: following-sibling::..., preceding-sibling::...
for selecting nodes on the same level (especially in ordered documents).

• straightforward: “descendant-or-self” and “ancestor-or-self”.
Note: The popular short form country//city is defined as
country/descendant-or-self::node()/city.
This makes a difference only in case of context functions (see Slide 221).

200

XPATH: AXES FOR USE IN DOCUMENT-ORIENTED XML

• following: all nodes after the context node in document order, excluding any descendants
and excluding attribute nodes

• preceding: all nodes that are before the context node in document order, excluding any
ancestors and excluding attribute nodes and namespace nodes

Note: For each element node x, the ancestor, descendant, following, preceding and self axes
partition a document (ignoring attribute nodes): they do not overlap and together they contain
all the nodes in the document.

Example:

Hamlet: what is the next speech of Lord Polonius after Hamlet said “To be, or not to be”?
(note: this can be in a subsequent scene or even act)

Exercise:

Provide equivalent characterizations of “following” and “preceding”

i) in terms of “preorder” and “postorder”,

ii) in terms of other axes.

201

XPATH: NODETEST

• The nodetest constrains the node type and/or the names of the selected nodes

• test if something is a node: //city[name=“Berlin”]/descendant::node()
returns all descendant nodes.

• test if something is an element node: //city[name=“Berlin”]/descendant::element()
returns all descendant elements (i.e., not the text nodes).

• test if something is a text node: //city[name=“Berlin”]/descendant::text()
returns all descendant text nodes.
//city[name=“Berlin”]/population/text()
returns the text contents of all population child elements (as a sequence of text nodes).

• test for a given element name:
//country[name=“Germany”]/descendant::element(population)
or short form:
//country[name=“Germany”]/descendant::population
returns all descendant population elements.

• “*” as wildcard: //city[name=“Berlin”]/child::*
returns all child elements of any element name (analogously for attribute::* and @*).

202

XPATH: TESTS

In each step

path/axis::nodetest [condition]/path

condition is a predicate over XPath expressions.

• The expression selects only those nodes from the result of path/axis::nodetest that
satisfy condition. condition contains XPath expressions that are evaluated relative to the
current context node of the respective step.

//country[@car_code=“D”]
returns the country element whose car_code attribute
has the value “D”

• When comparing an element with something, the string() method is applied implicitly:

//country[name = “Germany”] is equivalent to
//country[name/string() = “Germany”]

• If the right hand side of the comparison is a number, the comparison is automatically
evaluated on numbers:

//country[population > 1000000]

203

XPATH: TESTS (CONT’D)

• boolean connectives “and” and “or” in condition:

//country[population > 100000000 and @area > 5000000]
//country[population > 100000000 or @area > 5000000]

• boolean “not” is a function:

//country[not (population > 100000000)]

• XPath expressions in condition have existential semantics:
The truth value associated with an XPath expression is true, if its result set is non-empty:

//country[inflation]
selects those countries that have a subelement of type inflation.

⇒ formal semantics: a path expression has

– a semantics as a result set, and

– a truth value!

204

XPATH: TESTS (CONT’D)

• XPath expressions in condition are not only “simple properties of an object”, but are path
expressions that are evaluated wrt. the current context node:

//city[population/@year=’1995’]/name

• Such comparisons also have existential semantics, when one comparand is a node
sequence:

//country[.//city/name=’Cordoba’]/name
returns the names of all countries, in which some city with name Cordoba is located.

//country[not (.//city/name=’Cordoba’)]/name
returns the names of those countries where no city with name Cordoba is located.

205

XPATH: EVALUATION STRATEGY

• Input for each navigation step: A sequence of nodes (context)

• each of these nodes is considered separately for evaluation of the current step

• and returns zero or more nodes as (intermediate) result.
This intermediate result serves as context for the next step.

• finally, all partial results are collected and returned.

Example

• conditions can be applied to multiple steps

//country[population > 10000000]
//city[located_on and population > 1000000]

/name/text()

returns the names of all cities that have more than 1,000,000 inhabitants and are located
(at least partially) on an island and in a country that has more than 10,000,000
inhabitants.

206

ABSOLUTE AND RELATIVE PATHS

So far, conditions were always evaluated only “local” to the current element on the main
navigation path.

• Paths that start with a name are relative paths that are evaluated against the current
context node (used in conditions):

//city[name = “Berlin”]

• Semijoins: comparison with results of independent “subqueries”:
Paths that start with “/” or “//” are absolute paths:

//country[number(@area) > //country[@car_code=’B’]/@area]/name

returns the names of all countries are bigger than Belgium.

– automatically, the string values of the attributes are taken,

– casting to number must be applied on (at least) one side.

• conflict between “//” for absolute paths and for descendant axis:

//country[. //city/name=“Berlin”]
(equivalent: //country[descendant::city/name=“Berlin”])

can be used for starting a relative path.

207

XPATH: FUNCTIONS

Input: a node/value or a set of nodes/values.
Result: in most cases a value; sometimes one or more nodes.

• dereferencing (see Slide 210)

• access to text value and node name (see Slide 213)

• aggregate functions count(node_set), sum (node_set)

count(/mondial/country)

returns the number of countries.

• context functions (see Slide 220)

• access to documents on the Web:

doc(“file or url”)/path
doc(’http://www.dbis.informatik.uni-goettingen.de/index.html’)//text()

(for querying external HTML documents, consider use of namespaces as described on
Slide 239 - nodetests work only with namespace!)

• see W3C document XPath/XQuery Functions and Operators

208

IDREF ATTRIBUTES

• ID/IDREF attributes serve for expressing cross-references

• SQL-style: (single-IDREF) references can be resolved by semi-joins:
(similar to foreign keys in SQL)

//city[@id = //organization[abbrev=“EU”]/@headq]

SQL equivalent (uncorrelated subquery):

SELECT *
FROM city
WHERE (name, country, province) IN

(SELECT city, country, province
FROM organization
WHERE abbrev = 'EU')

... not a really elegant way in a graph-based data model ...
and would not work for IDREFS (white-space-separated tokens)

209

XPATH: DEREFERENCING

Access via “keys”/identifiers

The function id(string∗) returns all elements (of the current document) whose id’s are
enumerated in string∗:

• id(“D”) selects the element that represents Germany
(country/@car_code is declared as ID)

• id(//country[car_code=“D”]/@capital)
yields the element node of type city that represents Berlin.

This notation is hard to read if multiple dereferencing is applied, e.g.

id(id(id(//organization[abbrev=’IOC’]/@headq)/@country)/@capital)/name

Alternative syntaxes:

//organization[abbrev=’IOC’]/id(@headq)/id(@country)/id(@capital)/name
//organization[abbrev=’IOC’]/@headq/id(.)/@country/id(.)/@capital/id(.)/name

210

XPath: Dereferencing (Cont’d)

Analogously for multi-valued reference attributes (IDREFS):

• //country[@car_code=“D”]/@memberships
returns “org-EU org-NATO ...”

• id(//country[@car_code=“D”]/@memberships)
//country[@car_code=“D”]/id(@memberships)
returns the set of all elements that represent an organisation where Germany is a
member.

• id(//organization[abbrev=“EU”]/members/@country)
//organization[abbrev=“EU”]/members/id(@country)
returns all countries that are members (of some kind) in the EU.

211

Aside: Dereferencing by Navigation [Currently not supported]

Syntax:

attribute::nodetest⇒elementtype

Examples:

• //country[car_code=“D”]/@capital⇒city/name
yields the element node of type city that represents Berlin.

• //country[car_code=“D”]/@memberships⇒organization
yields elements of type organization.

• Remark: this syntax is not supported by all XPath Working Drafts:

– XPath 1.0: no

– has originally been introduced by Quilt (2000; predecessor of XQuery)

– XPath 2.0: early drafts yes, later no

– announced to be re-introduced later ...

212

XPATH: STRING() FUNCTION

The function string() returns the string value of a node:

• straightforward for elements with text-only contents:
string(//country[name=’Germany’]/population[1])
Note: for these (and only for these!) nodes, text() and string() have the same semantics.

• for attributes: //country[name=’Germany’]/string(@area)
Note: an attribute node is a name-value pair, not only a string (will be illustrated when
constructing elements later in XQuery)!
free-standing attribute nodes as result cannot be printed!

• the string() function can also be appended to a path; then the argument is each of the
context nodes: //country[name=’Germany’]//name/string()

• the string value of a subtree is the concatenation of all its text nodes:
//country[@name=’Germany’]/string()
Note: compare with //country[@name=’Germany’]//text() which lists all text nodes.

• string() cannot be applied to node sequences: string(//country[name=’Germany’]//name)
results in an error message.
(see W3C XPath and XQuery Functions and Operators).

213

XPATH: SOME MORE DETAILS ON COMPARISONS

• in the above examples, all predicate expressions like [name=“Berlin”] or
[@car_code=“D”] always implicitly compare the string value of nodes, e.g., here the
string values of <name>Berlin</name> or attribute: (car_code, “D”).

Usage of Numbers

• comparisons using > and < and a number literal given in the query implicitly cast the
string values as numeric values.

//city[population > 200000]
returns the all cities with a population higher than 200,000.

//city[population > ’200000’]

returns the all cities with a population alphabetically “bigger” than 200,000,
e.g., 3500, but not 1,000,000!

//city[population > //city[name="Munich"]/population]
does not recognize that numerical values are meant:
All cities with population alphanumerically bigger than “1244676” are returned.

//city[population > //city[name="Munich"]/population/number()]
It is sufficient to apply the number() casting function (see later) to one of the operands.

214

XPATH: COMPARISON BETWEEN NODES

Usage of Node Identity

• as seen above, the “=” predicate uses the string values of nodes.

In most cases, this is implicitly correct:

Consider the following query: “Give all countries whose capital is the headquarter of an
organization”:

//country[id(@capital)=//organization/id(@headq)]/name

Compares the overall string values of city elements, e.g., “Brussels 4.35 50.8 951580”.

• but for empty nodes, the result is not as intended ...

215

Comparison of Nodes

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mondial-simple SYSTEM "mondial-simple.dtd">
<mondial-simple>
<country car_code="D" capital="Berlin"/> <city name="Berlin"/>
<country capital="Brussels" car_code="B"/> <city name="Brussels"/>
<organization name="EU" headq="Brussels"/>

</mondial-simple> [Filename: XPath/node-comparison.xml]

• the query //country[id(@capital)=//organization/id(@headq)]/string(@car_code)
yields both “D” and “B” (city@name is the id attribute).

• Test for node identity see Slide 223 (since XPath 2.0).

• “deep equality” of nodes can be tested with the predicate deep-equal(x, y).
(by this, two subtrees are checked to have the same structure+contents (including
(unordered) attribute sets))

• the query
//country[deep-equal(id(@capital), //organization/id(@headq))]/string(@car_code)

yields only “B”.

216

XPATH: PREDICATES AND OPERATIONS ON STRINGS

• concat(string, string, string*)
also the SQL-like infix operator || is allowed (since XQuery 3.0)

• startswith(string, string)
//city[starts-with(name,’St.’)]/name

• contains(string, string)
//city[contains(name,’bla’)]/name

• substring-before(string, string, int?)

• substring-after(string, string, int?)

• substring(string, int, int): the substring consisting of i2 characters starting with the i1th
position.

217

XPATH: NAME FUNCTION

• the function name() returns the element name of the current node:

– name(//country[@car_code=’D’]) or
//country[@car_code=’D’]/name()

– //*[name=’Monaco’ and not (name()=’country’)] yields only the city element for
Monaco.

XPATH: IDREF FUNCTION

• the function idref(string∗) returns all nodes that have an IDREF value that refers to one of
the given strings (note that the results are attribute nodes):
idref(’D’)/parent::*/name yields the name elements of all “things” that reference Germany.

218

FUNCTIONS ON NODESETS

• Aggregation: count(nodeset), sum(nodeset), analogously min, max, sum, avg

sum(//country[encompassed/id(@continent)/name="Africa"]/@area)

count(//country)

all numeric functions implicitly cast to numeric values (double).

• removal of duplicates:

– recall that the XPath strategy works on sets of nodes in each step - duplicate nodes
are automatically removed:
//country/encompassed/id(@continent)
Starting with 244 countries, yielding a set of five continent nodes

– function distinct-values(nodeset):
takes the string values of the nodes and removes duplicates:
doc(’hamlet.xml’)//SPEAKER
returns lots of <SPEAKER>. . . </SPEAKER> nodes.
distinct-values(doc(’hamlet.xml’)//SPEAKER)
returns only the different (text) values.

• and many more (see W3C XPath/XQuery Functions and Operators).

219

XPATH: CONTEXT FUNCTIONS

• All functions retain the order of elements from the XML document (document order).

• the position() function yields the position of the current node in the current result set.

/mondial/country[position()=6]

Abbreviation: [x] instead of [position()=x]; [last()] yields the last node:

/mondial/country[population > 1000000][6]

selects the 6th country that has more than 1,000,000 inhabitants (in document order, not
the one with the 6th highest population!)

/mondial/country[6][population > 1000000]

selects the 6th country, if it has more than 1,000,000 inhabitants.

• the last() function returns the position of the last elements of the current sub-results, i.e.,
the size of the result.

//country[@car_code=’D’]/population[position()=last()] or
//country[@car_code=’D’]/population[last()]

for the most recent (last) population count.

220

XPATH: CONTEXT FUNCTIONS (CONT’D)

• consider again the “//” abbreviation (cf. Slide 200):

– /mondial/descendant::city[18] selects the 18th city in the document,

– /mondial/descendant-or-self::node()/city[18] selects each city which is the 18th child of
its parent (country or province).
(note that some implementations are buggy in this point ...)

• Note: above, position() is used for filtering.
Selecting and displaying the position is more complex:

//country[@car_code=’D’]/position()

yields “1” (for every country), since after evaluating //country[@car_code=’D’], the context
contains only one element – and its position in the context is 1.

See Slides 304 (XQuery) and Slides 393 (XSLT).

• Example queries against mondial.xml and hamlet.xml.

221

XPATH: FORWARD- AND BACKWARD AXES

• the result of each query is a sequence of nodes

• document order (and final results): forward

• context functions: forward or backward

• all axes enumerate results starting from the current node.

– forward axes: child, descendant, following, following-sibling

– backward axes: ancestor, preceding, preceding-sibling
//SPEECH[contains(.,’To be, or not to be’)]/preceding-sibling::SPEECH

selects all preceding speeches.
The result is -as always- output in document order.
//SPEECH[contains(.,’To be, or not to be’)]/preceding-sibling::SPEECH[1]

selects the last preceding speech (context function on backward axis)

– undirected: self, parent, attribute.

• only relevant for queries against document-oriented XML.

222

EXTENSIONS WITH XPATH 2.0

• first draft already in 2001 after first XQuery drafts; W3C Recommendation since 2007

• more complex path constructs (alternatives, parentheses)
(//city|//country)[name=’Monaco’]
/mondial/country/(city|(province/city))/name

• constructor “,” for sequences, e.g., to be used in (item-wise!) comparisons:

– /mondial/country[@car_code = (’D’, ’B’, ’F’)]

– /mondial/country[position() = (1, 5 to 9, 64)]
yields the first, the 5th to 9th, and the 64th country

• Comparison wrt. node identity is done by “is”

– recall from Slide 216: node comparison only by string value comparison or
deep-equality in XPath 1.0

– “is” requires both comparands to be single nodes; not node sequences (cf. Slide 224)

– //country[id(@capital) is //organization[abbrev=’EU’]/id(@headq)]/name

• alignment of the whole XML world (XPath, XQuery) with datatypes (data model and XML
Schema)

223

EXTENSIONS WITH XPATH 2.0: EVERY AND SOME – LOGICAL QUANTIFIERS

• logical ∀ and ∃ semantics for conditions:
countries where all/at least one city has more than 1000000 inhabitants:
//country[every $p in .//city/population[last()] satisfies $p > 1000000]
//country[some $p in .//city/population[last()] satisfies $p > 1000000]

Quantifiers extend the language to more than navigation

• the usage and syntax of variables is inherited from XQuery 1.0 (2001),

• quantifiers motivated by the relational calculus
(recall also EXISTS from SQL),

• break with the simplicity of XPath,

• “some”? – the XPath 1.0 comparisons have existential semantics
... when sequences are allowed in the comparison; otherwise the explicit “some” has to
be used:
//country[some $org in //organization satisfies $org/id(@headq) is id(@capital)]/name

• “every” is obviously useful
(remember the usage of relational division in SQL)

224

XPath with XPath 2.0’s logical quantifiers

Compare with relational algebra, relational calculus:

• inside of “[...]”, variables and (even nested) quantifiers are allowed:

– selection: filters

– projection: not supported (but inside conditions everything where a projection is used
can be replaced by variables and “and”)

– join: some $x1 in expr1 satisfies (...(some $xn in exprn satisfies subexpr ($x1...$xn))...)

– union: “|”, “or”

– non-atomic negation/set difference: not

– universal quantification: “every” or like in SQL via “not some ... not”

⇒ wrt. boolean queries (yes/no) and unary (i.e. result has a single column) queries,
relational completeness is obtained.

• missing: recombination of results (joins, generation of XML structures)

• complex queries are hard to write (and to test)

Exercise

• Give the names of all organizations that have at least one member on each continent.

225

5.2 Aside: Namespaces

The names in an XML instance (i.e., tag names and the attribute names) actually consist of
two parts:

• localpart + namespace (which can be empty, as in the previous examples)

Use of Namespaces

• a namespace is similar to a language: defining a set of names and sometimes having a
DTD (if intended as an XML vocabulary).

• e.g. “mondial:city”, “bib:book”, “xhtml:tr” “dc:author”, “xsl:template” etc.

• used for distinguishing coinciding element names in different application areas.

• each namespace is associated with a URI (which can be a “real” URL), and abbreviated
by a namespace prefix in the document.

• e.g., associate the namespace prefix xhtml with url http://www.w3.org/1999/xhtml.
these things will become clearer when investigating the RDF, RDFS, and Semantic Web
Data Models.

226

USAGE OF NAMESPACES IN XML DOCUMENTS

• each element can have (or can be in the scope of) multiple namespace declarations
(represented by a node in the data model, similar to an attribute node).

• namespace declarations are inherited to subelements

• the element/tag name and the attribute names can then use one of the declared
namespaces.
By that, every element can have one primary namespace and “knows” several others.

Alternatives:

1. the elements have no namespace (e.g. mondial),

2. the document declares a default namespace (for all elements (not the attributes!) that do
not get an explicit one (often in XHTML pages)),

3. elements have an explicit namespace (multiple namespaces allowed in a document; e.g.
an XSL document that operates with XHTML markup and “mondial:” nodes).

• (2) and (3) are semantically equivalent.

... see next slides.

227

EXPLICIT NAMESPACE IN AN XML DOCUMENT

<xh:html xmlns:xh="http://www.w3.org/1999/xhtml">
<xh:body>
<xh:h3>Header</xh:h3>
<xh:a href="http://www.informatik.uni-goettingen.de">IFI</xh:a>

</xh:body>
</xh:html>

[Filename: XML-DTD/xhtml-expl-namespace.xml]

• Note: attribute is not in the HTML namespace!

This is actually already not XPath, but a simple XQuery query:
declare namespace ht = "http://www.w3.org/1999/xhtml";
/ht:html//ht:a/string(@href)

[Filename: XPath/xhtml-query.xq]

• Note: the namespace must be used in the query,
i.e., “ht:html” is different from just “html”

• more accurate, it means something like <{http://www.w3.org/1999/xhtml}html>...</...>

since not the chosen namespace prefix matters, but only the URI assigned to it.

228

TWO EXPLICIT NAMESPACES IN AN XML DOCUMENT

• “Dublin Core” defines a vocabulary for metadata description of resources (here: of XML
documents); cf. http://dublincore.org/documents/dces/

<xh:html xmlns:xh="http://www.w3.org/1999/xhtml"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<xh:head> <dc:creator>John Doe</dc:creator>
<dc:date>1.1.2000</dc:date> </xh:head>

<xh:body> ... </xh:body> </xh:html>
[Filename: XML-DTD/xhtml-expl-namespaces.xml]

declare namespace ht = "http://www.w3.org/1999/xhtml";
declare namespace dc = "http://purl.org/dc/elements/1.1/";
/ht:html//dc:creator/text()

[Filename: XPath/xhtml-dc-query.xq]

• the document is not valid wrt. the XHTML DTD since it contains additional “alien”
elements.
(combination of languages is a problem in XML – this is better solved in RDF/RDFS)

• in RDF, dc:creator from above expands to the URI
http://purl.org/dc/elements/1.1/creator.

229

(DIFFERENT) DEFAULT NAMESPACES IN AN XML DOCUMENT

• a Default Namespace can be assigned to an element (and inherited to all its subelements
where it is not overwritten):

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<head> <dc:creator>John Doe</dc:creator>
<date xmlns="http://purl.org/dc/elements/1.1/">1.1.2000</date> </head>

<body> ... </body> </html>
[Filename: XML-DTD/xhtml-def-namespaces.xml]

declare namespace ht = "http://www.w3.org/1999/xhtml";
declare namespace dc = "http://purl.org/dc/elements/1.1/";
/ht:html/ht:head/dc:date/text()

[Filename: XPath/xhtml-dc-def-query.xq]

230

NAMESPACES AND ATTRIBUTES

• Namespaces are not inherited to attributes in any case. If an attribute should be
associated with a namespace, this must be done explicitly:

<ht:html xmlns:ht="http://www.w3.org/1999/xhtml">
<ht:body>
<ht:a href="1+" ht:href="2-">IFI</ht:a>
<x:a xmlns:x="http://www.w3.org/1999/xhtml" href="3+" x:href="4-">IFI</x:a>
IFI

</ht:body> </ht:html>
[Filename: XML-DTD/namespaces-attr.xml]

declare namespace ht = "http://www.w3.org/1999/xhtml";
/ht:html//ht:a/@href/string()

[Filename: XPath/namespaces-attr-query.xq]

• the “HTML-correct” attributes “1+”, “3+”, and “5+” are returned,

• the query /ht:html//ht:a/@ht:href/string() returns the “wrong” attributes “2-”, “4-”, and “6-”.

231

DECLARING NAMESPACES IN THE DTD DOCUMENT

• introduce default namespace in the DTD as attribute of the root element (e.g. in the W3C
XHTML DTD) described at
https://www.w3.org/TR/xhtml1/dtds.html#a_dtd_XHTML-1.0-Strict

<!ELEMENT html (head, body)>
<!ATTLIST html

xmlns %URI; #FIXED 'http://www.w3.org/1999/xhtml' >

• an XHTML instance (or subtree, cf. Slide 240) loading this DTD automatically extends to:

<html xmlns=“http://www.w3.org/1999/xhtml”> <body> ... </body></html>

• introduce explicit namespaces as attribute of the root element:

<!ELEMENT html (head, body)>

<!ATTLIST html xmlns:xh %URI; #FIXED ’http://www.w3.org/1999/xhtml’ >

This is extensively used with RDF/XML in the Semantic Web.

232

DECLARING A DEFAULT NAMESPACE IN XQUERY

XQuery allows to declare default namespaces for elements and for functions:

• are then added to each element and function step, respectively;

• not for attributes (recall that namespaces from elements are not inherited to attributes).
(cf. Slide 231)

declare default element namespace "http://www.w3.org/1999/xhtml";
/html//a/@href/string()

[Filename: XPath/namespaces-default-query.xq]

• the “HTML-correct” attributes “1+”, “3+”, and “5+” are returned,

• the equivalent query is /h:html//h:a/@href/string().

233

EXCLUSIVE CANONICAL XML

• Required for some applications (e.g., usage of XMLLiteral values in the “Jena” Semantic
Web Framework)

• XML fragments/subtrees must be processable without their context – thus, namespaces
must be present at appropriate levels in the tree.

• Details: http://www.w3.org/TR/xml-exc-c14n/

• in case you ever need it: can be obtained with xmllint –exc-c14n x.xml > y.xml
(and analogously by other tools)

234

5.3 Aside: XML Catalogs

(cf. introductory note at Slide 163)

Accessing an XHTML document that contains a reference to W3Cs XHTML DTD at
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd via software (other than a
browser) fails since the DTD is not accessible.

• an XML catalog is a dictionary uri→accessible_url :

• whenever the resource identified by uri is referenced, take the resource that is actually
accessible at accessible_url (usually a local copy of the item).

– DTDs

– entity references (cf. Slide 185),

– a graphics for an HTML , e.g. a company’s logo

– anything for an XML Inclusion (XInclude; cf. Slide 491)

• Software then uses a Resolver instance.

235

XML Catalog

• XML catalogs are XML documents themselves

• a catalog contains different subelements

• default catalog at /etc/xml/catalog (only root can change it),

• usage from several tools: put it in a central place (e.g., ~/teaching/ssd/XMLCatalog),

• if a tool or a servlet uses an own catalog (e.g., the XQuery Web interface) it can have an
own, local one.

• put the DTDs (etc.) that should be made accessible somewhere, e.g., next to the catalog
in a "DTD" subdirectory.

<?xml version="1.0"?>
<!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.0//EN"

"file:///usr/share/xml/schema/xml-core/catalog.dtd">
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

<system systemId="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
uri="DTD/xhtml1-strict.dtd"/>

<system systemId="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
uri="DTD/xhtml1-transitional.dtd"/>

</catalog> [Filename: ~dbis/XMLTools/XMLCatalog/catalog]

236

Required files for XHTML

• xhtml1-strict.dtd, xhtml1-transitional.dtd,

• xhtml-lat1.ent, xhtml-symbol.ent, xhtml-special.ent

Using the XML Catalog

• software comes with a resolver, or

• get the XML Commons Resolver (resolver.jar) from Apache, put it somewhere (e.g. also
below the XMLCatalog directory).

• since version 9.4 (Dec. 2011), saxon uses local copies of the W3C DTDs automatically.

• when (non-XHTML) XML documents with public DTD references are used frequently,
copying them and using a catalog entry saves time and Web traffic.

• Technical description for using catalogs in saxon can be found at
http://sourceforge.net/apps/mediawiki/saxon/index.php?title=XML_Catalogs
and http://saxonica.com/documentation/sourcedocs/xml-catalogs.xml.

237

Saxon Call with Catalog until 9.3

• Java -D: set environment variable for java

• saxon -r,-x allows to refer to appropriate classes explicitly

java -cp $DBIS/XML-Tools/saxon/saxon9.jar:$DBIS/XML-Tools/XMLCatalog/resolver.jar \
-Dxml.catalog.files=$DBIS/XML-Tools/XMLCatalog/catalog \
net.sf.saxon.Query \
-r:org.apache.xml.resolver.tools.CatalogResolver \
-x:org.apache.xml.resolver.tools.ResolvingXMLReader \
catalogtest.xq [Filename: XMLCatalog/saxon.call.old]

• (for saxonXSL: -r, -x, -y)

Shorter with -catalog (Saxon 9.4)

java -cp $DBIS/XML-Tools/saxon/saxon9.jar:$DBIS/XML-Tools/XMLCatalog/resolver.jar \
net.sf.saxon.Query \
-catalog:$DBIS/XML-Tools/XMLCatalog/catalog \
catalogtest.xq [Filename: XMLCatalog/saxon.call]

doc('http://www.dbis.informatik.uni-goettingen.de/')
[Filename: XMLCatalog/catalogtest.xq]

238

EXAMPLE: QUERYING XHTML IN PRESENCE OF NAMESPACES

XHTML DTD at http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd contains:

<!ELEMENT html (head, body)>
<!ATTLIST html id ID #IMPLIED

xmlns %URI; #FIXED 'http://www.w3.org/1999/xhtml'>

Sample XHTML files:

• DBIS Web pages:

declare namespace h = "http://www.w3.org/1999/xhtml";
doc('http://www.dbis.informatik.uni-goettingen.de/')//h:li/h:a/@href/string()

[Filename: XPath/web-queries.xq]

239

5.4 Use Case: Mondial with Embedded HTML Fragments

• define a default namespace for Mondial

– is then inherited to all subelements (except they overwrite it, as the html element will
do ...)

– could also be declared as FIXED in the DTD (cf. the XHTML DTD)

• just use (XHTML-valid) html subelements (their default namespace URL will be FIXED in
the original W3C XHTML DTD), inside the city elements,

• non-default namespace prefixes can be used, but then prefix:localname acts in the DTD
like a name that contains a “:” – the prefix cannot be changed.

240

Use Case: Mondial with Embedded HTML and Dublin Core Fragments
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mondial SYSTEM "monhtml.dtd">
<mondial xmlns="https://www.semwebtech.org/mondial/10/">

<country car_code="D" capital="berlin">
<name>Germany</name>
<html><head><title>GERMANY</title></head><body><p>...</p></body></html>
<city id="berlin"><name>Berlin</name>

<dc:author>John Doe</dc:author>
<html><head><title>BERLIN</title></head><body><p>...</p></body></html>

</city>
<city id="hambg"><name>Hamburg</name>

<dc:author>Jane Doe</dc:author>
<html><head><title>HAMBURG</title></head><body><p>...</p></body></html>

</city>
</country>

</mondial> [Filename: XQuery/monhtml.xml]

• Next slide: DTD that defines the XHTML default namespace by a FIXED attribute for the
<html> element

241

The Mondial+HTML DTD

• extend the Mondial DTD:

– allow for an xmlns attribute (could be FIXED),

– allow nested html elements where needed,

– add the city’s dc:author subelement declaration stuff (with hardcoded prefix),

– reference the XHTML DTD (by its URL) using a SYSTEM external entity.

<!ELEMENT mondial (country*)>
<!ATTLIST mondial xmlns CDATA #IMPLIED>

<!ELEMENT country (name+, html?, city+)>
<!ATTLIST country car_code ID #REQUIRED

capital IDREF #IMPLIED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT city (name+, dc:author?, html?)>

<!ATTLIST city id ID #REQUIRED>

<!ELEMENT dc:author (#PCDATA)>
<!ATTLIST dc:author xmlns:dc CDATA #FIXED 'http://purl.org/dc/elements/1.1/'>

<!ENTITY % htmldtd SYSTEM 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>
%htmldtd; [Filename: XQuery/monhtml.dtd]

242

Validate Mondial+HTML wrt. both DTDs

• use saxon to validate – it will automatically use its internal XHTML DTD

• xmllint tries (unsuccessfully) to access the W3C DTD. For it, a dirty workaround is

<!ENTITY % htmldtd SYSTEM 'myxhtml.dtd'>
%htmldtd;

and copy the W3C DTD to this local file (and download or remove references at its
beginning).

243

Querying Mondial+HTML

• The XHTML DTD defines (fixed)

<!ELEMENT html (head, body)>
<!ATTLIST html xmlns %URI; #FIXED 'http://www.w3.org/1999/xhtml'>

• in this example mondial also defines a namespace.

• note that the “dc” prefix cannot be changed since it is hardcoded in the monhtml.dtd.

declare namespace mon="https://www.semwebtech.org/mondial/10/";
declare namespace h="http://www.w3.org/1999/xhtml";
declare namespace dc="http://purl.org/dc/elements/1.1/";
/mon:mondial//mon:city[dc:author]//h:title [Filename: XQuery/monhtml.xq]

• recall that the element namespace is not applied to the attributes:

declare namespace mon="https://www.semwebtech.org/mondial/10/";
declare namespace h="http://www.w3.org/1999/xhtml";
/mon:mondial//mon:country/id(@capital)/h:html/h:head/h:title

[Filename: XQuery/monhtml2.xq]

244

5.5 XPath: Conclusion

XPath without variables
• simple (and cheap) navigation language

• only following a “main path” for addressing sets of nodes (including semijoins)

• not “give all pairs of ...”

• selection/filtering: yes

• projection/reduction: no. Only complete nodes can be selected

• join/combination: no. Only semi-joins can be expressed in the conditions

• subqueries: inside the conditions as semijoins

• restructuring of the results: no

⇒ only a fragment of a query language for addressing nodes.

– compared with SQL, XPath allows only for “SELECT *” and a unary “FROM” clause

– XQL (Software AG, 1998/1999) for some time followed (as one of the predecessors of
XPath) an approach to add join variables and constructs for projection and
restructuring/grouping to the path language (cf. Slides 251 ff).

245

XPath (3.0) with “some”/“every” and Variables (cf. Slide 224)

• relational completeness (cf. SQL, relational calculus) inside filters

• still no generation of structures/joins on the result level.

Exercise

Consider the following query that yields the highest mountain in Africa:
(without variables, using semijoins)
doc('mondial.xml')//mountain[

id(id(located/@country)/encompassed/@continent)/name='Africa'
and
not (number(elevation) <
//mountain[
id(id(located/@country)/encompassed/@continent)/name='Africa']/elevation)]

/name [Filename: XPath/highestmountain.xq]

Give the names of all mountains that are the highest ones on the continent where they are
located.
(two properties of the same object (elevation, continent) must be compared independently →
requires variable binding)

246

IMPORTANCE OF XPATH IN THE XML-WORLD

• adressing mechanism for nodes in XML documents

• navigation in the tree structure

• serves as base for different concepts:

– XQuery

– XSL/XSLT: stylesheets, transformation language

– other query languages

– XML Schema

– [XPointer/XLink – rarely used]

247

