Chapter 5
Query Languages: XPath

» Network Data Model: no query language; only some specific commands extending the
host language

« SQL — only for a flat data model, but a “nice” language
(easy to learn, descriptive, relational algebra as foundation, clean theory, optimizations)

« OQL: SQL with object-orientation and path expressions
« Lorel (OEM): extension of OQL

» F-Logic: navigation in a graph by path expressions with additional conditions
descriptive, complex.

192

REQUIREMENTS ON AN XML QUERY LANGUAGE

+ suitable both for databases and for documents

« declarative: binding variables and using them

— rule-based, or

— SQL-style clause-based (which is in fact only syntactic sugar)
* binding variables in the rule body/selection clause:

suitable for complex objects

— navigation by path expressions, or

— patterns

 generation of structure in the rule head/generating clause

193

EVvOLUTION OF XPATH

» when defining a query language, constructs are needed for addressing and accessing
individual elements/attributes or sets of elements/attributes.

» based on this addressing mechanism, a clause-based language is defined.

Early times of XML (1998)
different navigation formalisms of that kind:

» XSL Patterns (inside the stylesheet language)

« XQL (XML Query Language)

« XPointer (referencing of nodes/areas in an XML document)
used all the same basic idea with slight differences in the details:

« paths in UNIX notation

« conditions on the path

/mondial/country[@car_code="D"]/city[population > 100000]/name

194

5.1 XPath - the Basics

1999: specification of the navigation formalism as W3C XPath.

» Base: UNIX directory notation

in a UNIX directory tree: /home/dbis/Mondial/mondial.xml
in an XML tree: /mondial/country/city/name

Straightforward extension of the URL specification:
http://.../dbis/Mondial/mondial.xml#mondial/country/city/name [XPointer until 2002]
http://.../dbis/Mondial/mondial.xml#xpointer(mondial/country/city/name) [XPointer now]

« W3C: XML Path Language (XPath), Version 1.0 (W3C Recommendation 16. 11. 1999)
http://www.w3.org/TR/xpath

» W3C: XPath 2.0 and XQuery 1.0 (W3C Recommendation 23. 1. 2007)
http://www.w3.org/TR/xquery

 Tools: see Web page
— XML (XQuery) database system “eXist”
— lightweight tool “saxonXQ” (XQuery)

195

XPATH: NAVIGATION, SIMPLE EXAMPLES

XPath is based on the UNIX directory notation:

 /mondial/country
addresses all country elements in MONDIAL,
the result is a set of elements of the form

<country code="..."> ... </country>

 /mondial/country/city
addresses all city elements, that are direct subelements of country elements.

 /mondial/country//city
adresses all city elements that are subelements (in any depth) of country elements.

* /[city
addresses all city elements in the current document.

+ wildcards for element names:
/mondial/*/name
addresses all name elements that are grandchildren of the mondial elements
(different from /mondial//name which goes to arbitrary depth!)

196

... and now systematically:

XPATH: ACCESS PATHS IN XML DOCUMENTS

 Navigation paths
/stepl/stepl. . ./step
are composed by individual navigation steps,

the result of each step is a sequence of nodes, that serve as input for the next step.

» each step consists of
axis::nodetest[condition]*
— an axis (optional),
— atest on the type and the name of the nodes,

— (optional) predicates that are evaluated for the current node.

paths are combined by the “/"-operator

additionally, there are function applications

the result of each XPath expression is a sequence of nodes or literals.

197

XPATH: AXES

Starting with a current node it is possible to navigate in an XML tree to several “directions” (cf.
xmllint’s “cd”-command).

In each navigation step
path/axis::nodetest[condition)/path

the axis specifies in which direction the navigation takes place. Given the sequence of nodes
that is addressed by path, for each node, the step is evaluated.

 Default: child axis: child::country = country.

* Descendant axis: all sub-, subsub-, ... elements:
country/descendant::city
selects all city elements, that are contained (in arbitrary depth) in a country element.
Note: path//city actually also addresses all these city elements, but “//” is not the exact
abbreviation for “/descendant::” (see later).

198

XPATH: AXES

... another important axis:

« attribute axis:
attribute::car_code = @car_code
wildcard for attributes: attribute::* selects all attributes of the current context node.

 and a less important:
self axis: self::city = ./city
selects the current element, if it is of the element type city.

for the above-mentioned axes there are the presented abbreviations. This is important for
XSL patterns (see Slide 351):

XSL (match) patterns are those XPath expressions, that are built without the use of “axis::”
(the abbreviations are allowed).

199

XPATH: AXES

Additionally, there are axes that do not have an abbreviation:

» parent axis: //city[name="Berlin”]/parent::country

selects the parent element of the city element that represents Berlin, if this is of the
element type country.

(only the parent element, not all ancestors!)

ancestor: all ancestors:
/[city[name="Berlin”]/ancestor::country selects all country elements that are ancestors of
the city element that represents Berlin (which results in the Germany element).

for selecting nodes on the same level (especially in ordered documents).

straightforward: “descendant-or-self” and “ancestor-or-self”.

Note: The popular short form country//city is defined as
country/descendant-or-self::node()/city.

This makes a difference only in case of context functions (see Slide 221).

200

XPATH: AXES FOR USE IN DOCUMENT-ORIENTED XML

following: all nodes after the context node in document order, excluding any descendants
and excluding attribute nodes

preceding: all nodes that are before the context node in document order, excluding any
ancestors and excluding attribute nodes and namespace nodes

Note: For each element node z, the ancestor, descendant, following, preceding and self axes
partition a document (ignoring attribute nodes): they do not overlap and together they contain
all the nodes in the document.

Example:

Hamlet: what is the next speech of Lord Polonius after Hamlet said “To be, or not to be”?
(note: this can be in a subsequent scene or even act)

Exercise:

Provide equivalent characterizations of “following” and “preceding”

i) interms of “preorder” and “postorder”,

ii) in terms of other axes.

201

XPATH: NODETEST

The nodetest constrains the node type and/or the names of the selected nodes

test if something is a node: //city[name="Berlin”)/descendant::node()
returns all descendant nodes.

test if something is an element node: //city[name="Berlin”]/descendant::element()
returns all descendant elements (i.e., not the text nodes).

test if something is a text node: //city[name="Berlin”}/descendant::text()

returns all descendant text nodes.

/[city[name="Berlin”)/population/text()

returns the text contents of all population child elements (as a sequence of text nodes).

test for a given element name:
//lcountry[name=“Germany”]/descendant::element(population)
or short form:
/[country[name="Germany”])/descendant::population

returns all descendant population elements.

“*” as wildcard: //city[name="Berlin”])/child::*
returns all child elements of any element name (analogously for attribute::* and @*).

202

XPATH: TESTS

In each step

path/axis::nodetest[condition]/path

condition is a predicate over XPath expressions.

The expression selects only those nodes from the result of path/axis::nodetest that
satisfy condition. condition contains XPath expressions that are evaluated relative to the
current context node of the respective step.

//country[@car_code=“D"]
returns the country element whose car_code attribute
has the value “D”
When comparing an element with something, the string() method is applied implicitly:
/lcountry[name = “Germany”] is equivalent to
/[country[name/string() = “Germany’]

If the right hand side of the comparison is a number, the comparison is automatically
evaluated on numbers:

//country[population > 1000000]

203

XPATH: TESTS (CONT’D)

 boolean connectives “and” and “or” in condition:
/[country[population > 100000000 and @area > 5000000]
//country[population > 100000000 or @area > 5000000]

* boolean “not” is a function:
//[country[not (population > 100000000)]

» XPath expressions in condition have existential semantics:
The truth value associated with an XPath expression is true, if its result set is non-empty:

//country[inflation]
selects those countries that have a subelement of type inflation.

= formal semantics: a path expression has
— a semantics as a result set, and

— a truth value!

204

XPATH: TESTS (CONT’D)

« XPath expressions in condition are not only “simple properties of an object”, but are path
expressions that are evaluated wrt. the current context node:

//city[population/@year="1995')/name
» Such comparisons also have existential semantics, when one comparand is a node
sequence:

/[country[.//city/name="Cordoba’]/name
returns the names of all countries, in which some city with name Cordoba is located.

/[country[not (.//city/name="Cordoba’)]/name
returns the names of those countries where no city with name Cordoba is located.

205

XPATH: EVALUATION STRATEGY

Input for each navigation step: A sequence of nodes (context)

each of these nodes is considered separately for evaluation of the current step

« and returns zero or more nodes as (intermediate) result.
This intermediate result serves as context for the next step.

finally, all partial results are collected and returned.

Example

« conditions can be applied to multiple steps

/[country[population > 10000000]
//city[located_on and population > 1000000]
/name/text|()

returns the names of all cities that have more than 1,000,000 inhabitants and are located
(at least partially) on an island and in a country that has more than 10,000,000
inhabitants.

206

ABSOLUTE AND RELATIVE PATHS

So far, conditions were always evaluated only “local” to the current element on the main
navigation path.

« Paths that start with a name are relative paths that are evaluated against the current
context node (used in conditions):
/[city[name = “Berlin”]
« Semijoins: comparison with results of independent “subqueries”:
Paths that start with “/” or “//” are absolute paths:
/lcountry[number(@area) > //country[@car_code='B’]/@area)/name
returns the names of all countries are bigger than Belgium.
— automatically, the string values of the attributes are taken,
— casting to number must be applied on (at least) one side.

« conflict between “//” for absolute paths and for descendant axis:

/[countryl. //city/name="Berlin”]
(equivalent: //country[descendant::city/name=“Berlin”])

can be used for starting a relative path.

207

XPATH: FUNCTIONS

Input: a node/value or a set of nodes/values.
Result: in most cases a value; sometimes one or more nodes.

dereferencing (see Slide 210)
access to text value and node name (see Slide 213)

aggregate functions count(node_set), sum (node_set)
count(/mondial/country)
returns the number of countries.

context functions (see Slide 220)

access to documents on the Web:

doc(“file or url’)/path
doc(’http://www.dbis.informatik.uni-goettingen.de/index.html’)//text()

(for querying external HTML documents, consider use of namespaces as described on
Slide 239 - nodetests work only with namespace!)

see W3C document XPath/XQuery Functions and Operators

208

IDREF ATTRIBUTES

ID/IDREF attributes serve for expressing cross-references

SQL-style: (single-IDREF) references can be resolved by semi-joins:
(similar to foreign keys in SQL)

/[city[@id = //organization[abbrev="EU")/@headq]
SQL equivalent (uncorrelated subquery):

SELECT *

FROM city

WHERE (name, country, province) IN
(SELECT city, country, province
FROM organization
WHERE abbrev = 'EU')

... hot a really elegant way in a graph-based data model ...
and would not work for IDREFS (white-space-separated tokens)

209

XPATH: DEREFERENCING

Access via “keys”/identifiers

The function id(string*) returns all elements (of the current document) whose id’s are
enumerated in string*:

* id(“D”) selects the element that represents Germany
(country/@car_code is declared as ID)

* id(//country[car_code="D"]/@capital)
yields the element node of type city that represents Berlin.

This notation is hard to read if multiple dereferencing is applied, e.g.
id(id(id(//organization[abbrev="lOC’)/@headq)/@country)/@capital)/name
Alternative syntaxes:

//organization[abbrev="lOC’)/id(@headq)/id(@country)/id(@capital)/name
//organization[abbrev="I0C’]/@headq/id(.)/@country/id(.)/@capital/id(.)/name

210

XPath: Dereferencing (Cont’d)

Analogously for multi-valued reference attributes (IDREFS):

« //country[@car_code="D")/@memberships
returns “org-EU org-NATO ..”

* id(/country[@car_code="D")/@memberships)
/lcountry[@car_code="D")/id(@memberships)
returns the set of all elements that represent an organisation where Germany is a
member.

* id(//organization[abbrev="EU")/members/@country)
//organization[abbrev="EU”]/members/id(@country)
returns all countries that are members (of some kind) in the EU.

211

Aside: Dereferencing by Navigation [Currently not supported]

Syntax:

attribute::nodetest=-elementtype

Examples:

* //country[car_code="D"]/@capital=-city/name

yields the element node of type city that represents Berlin.

* //country[car_code="D")/@memberships=-organization

yields elements of type organization.

« Remark: this syntax is not supported by all XPath Working Drafts:

— XPath 1.0: no
— has originally been introduced by Quilt (2000; predecessor of XQuery)
— XPath 2.0: early drafts yes, later no

— announced to be re-introduced later ...

212

XPATH: STRING() FUNCTION

The function string() returns the string value of a node:

straightforward for elements with text-only contents:
string(//country[name="Germany’]/population[1])
Note: for these (and only for these!) nodes, text() and string() have the same semantics.

for attributes: //country[name="Germany’]/string(@area)

Note: an attribute node is a name-value pair, not only a string (will be illustrated when
constructing elements later in XQuery)!

free-standing attribute nodes as result cannot be printed!

the string() function can also be appended to a path; then the argument is each of the
context nodes: //country[name="Germany’]//name/string()

the string value of a subtree is the concatenation of all its text nodes:
/lcountry[@name="Germany’]/string()
Note: compare with //country[@name="Germany’]//text() which lists all text nodes.

string() cannot be applied to node sequences: string(//country[name="Germany’]//name)
results in an error message.
(see W3C XPath and XQuery Functions and Operators).

213

XPATH: SOME MORE DETAILS ON COMPARISONS

* in the above examples, all predicate expressions like [name="“Berlin”] or
[@car_code="D”] always implicitly compare the string value of nodes, e.g., here the
string values of <name>Berlin</name> or attribute: (car_code, “D”).

Usage of Numbers

« comparisons using > and < and a number literal given in the query implicitly cast the
string values as numeric values.
/[city[population > 200000]
returns the all cities with a population higher than 200,000.
/[city[population > ’200000’]
returns the all cities with a population alphabetically “bigger” than 200,000,
e.g., 3500, but not 1,000,000!
/[city[population > //city[name="Munich"])/population]
does not recognize that numerical values are meant:
All cities with population alphanumerically bigger than “1244676” are returned.

/[city[population > //city[name="Munich"]/population/number()]

It is sufficient to apply the number() casting function (see later) to one of the operands.

214

XPATH: COMPARISON BETWEEN NODES

Usage of Node ldentity

* as seen above, the “=" predicate uses the string values of nodes.
In most cases, this is implicitly correct:
Consider the following query: “Give all countries whose capital is the headquarter of an
organization”:
/[country[id(@capital)=//organization/id(@headq)]/name
Compares the overall string values of city elements, e.g., “Brussels 4.35 50.8 951580".

* but for empty nodes, the result is not as intended ...

215

Comparison of Nodes

<?7xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE mondial-simple SYSTEM "mondial-simple.dtd">
<mondial-simple>

<country car_code="D" capital="Berlin"/> <city name="Berlin"/>
<country capital="Brussels" car_code="B"/> <city name="Brussels"/>

<organization name="EU" headq="Brussels"/>

</mondial-simple> [Filename: XPath/node-comparison.xml]

« the query //country[id(@capital)=//organization/id(@headq)]/string(@car_code)
yields both “D” and “B” (city@name is the id attribute).

« Test for node identity see Slide 223 (since XPath 2.0).

 “deep equality” of nodes can be tested with the predicate deep-equal(x, y).
(by this, two subtrees are checked to have the same structure+contents (including
(unordered) attribute sets))

* the query
/Ilcountry[deep-equal(id(@capital), //organization/id(@headq))]/string(@car_code)
yields only “B”.

216

XPATH: PREDICATES AND OPERATIONS ON STRINGS

« concat(string, string, string®)
also the SQL-like infix operator | | is allowed (since XQuery 3.0)

« startswith(string, string)
/[city[starts-with(name, St.’)]/name

* contains(string, string)
/[city[contains(name,’bla’)]/name

» substring-before(string, string, int?)
* substring-after(string, string, int?)

« substring(string, int, int): the substring consisting of i5 characters starting with the i;th
position.

217

XPATH: NAME FUNCTION

« the function name() returns the element name of the current node:

— name(//country[@car_code="D’]) or
/lcountry[@car_code="D’]/name()

— //*'[name="Monaco’ and not (name()="country’)] yields only the city element for
Monaco.

XPATH: IDREF FUNCTION

« the function idref(string*) returns all nodes that have an IDREF value that refers to one of
the given strings (note that the results are attribute nodes):
idref(’D’)/parent::*/name yields the name elements of all “things” that reference Germany.

218

FUNCTIONS ON NODESETS

» Aggregation: count(nodeset), sum(nodeset), analogously min, max, sum, avg
sum(//country[encompassed/id(@continent)/name="Africa"]/@area)
count(//country)
all numeric functions implicitly cast to numeric values (double).

» removal of duplicates:

— recall that the XPath strategy works on sets of nodes in each step - duplicate nodes
are automatically removed:
//lcountry/encompassed/id(@continent)

Starting with 244 countries, yielding a set of five continent nodes

— function distinct-values(nodeset):
takes the string values of the nodes and removes duplicates:
doc(’hamlet.xml’)//SPEAKER
returns lots of <SPEAKER-...</SPEAKER> nodes.
distinct-values(doc(’hamlet.xml’)//SPEAKER)
returns only the different (text) values.

» and many more (see W3C XPath/XQuery Functions and Operators).

219

XPATH: CONTEXT FUNCTIONS

All functions retain the order of elements from the XML document (document order).

the position() function yields the position of the current node in the current result set.
/mondial/country[position()=6]

Abbreviation: [x] instead of [position()=x]; [last()] yields the last node:
/mondial/country[population > 1000000][6]

selects the 6th country that has more than 1,000,000 inhabitants (in document order, not
the one with the 6th highest population!)

/mondial/country[6][population > 1000000]
selects the 6th country, if it has more than 1,000,000 inhabitants.
the last() function returns the position of the last elements of the current sub-results, i.e.,
the size of the result.

/[country[@car_code="D’])/population[position()=last()] or
//country[@car_code='D’]/population[last()]

for the most recent (last) population count.

220

XPATH: CONTEXT FUNCTIONS (CONT’D)

consider again the “//” abbreviation (cf. Slide 200):
— /mondial/descendant::city[18] selects the 18th city in the document,

— /mondial/descendant-or-self::node()/city[18] selects each city which is the 18th child of
its parent (country or province).
(note that some implementations are buggy in this point ...)

Note: above, position() is used for filtering.
Selecting and displaying the position is more complex:
//country[@car_code='D’]/position()

yields “1” (for every country), since after evaluating //country[@car_code="D’], the context
contains only one element — and its position in the context is 1.

See Slides 304 (XQuery) and Slides 393 (XSLT).

Example queries against mondial.xml and hamlet.xml.

221

XPATH: FORWARD- AND BACKWARD AXES

the result of each query is a sequence of nodes

document order (and final results): forward

context functions: forward or backward

all axes enumerate results starting from the current node.
— forward axes: child, descendant, following, following-sibling
— backward axes: ancestor, preceding, preceding-sibling
//ISPEECH][contains(., To be, or not to be’)]/preceding-sibling::SPEECH
selects all preceding speeches.
The result is -as always- output in document order.

//SPEECH][contains(., To be, or not to be’)]/preceding-sibling::SPEECH|1]
selects the last preceding speech (context function on backward axis)

— undirected: self, parent, attribute.

« only relevant for queries against document-oriented XML.

222

EXTENSIONS WITH XPATH 2.0

« first draft already in 2001 after first XQuery drafts; W3C Recommendation since 2007

* more complex path constructs (alternatives, parentheses)
(//city|//country)[name="Monaco’]
/mondial/country/(city|(province/city))/name

 constructor “,” for sequences, e.g., to be used in (item-wise!) comparisons:
— /mondial/country[@car_code = ('D’, 'B’, 'F’)]

— /mondial/country[position() = (1, 5 t0 9, 64)]
yields the first, the 5th to 9th, and the 64th country
« Comparison wrt. node identity is done by “is”

— recall from Slide 216: node comparison only by string value comparison or
deep-equality in XPath 1.0

— “is” requires both comparands to be single nodes; not node sequences (cf. Slide 224)
— //country[id(@capital) is //organization[abbrev="EU’]/id(@headq)]/name

« alignment of the whole XML world (XPath, XQuery) with datatypes (data model and XML
Schema)

223

EXTENSIONS WITH XPATH 2.0: EVERY AND SOME — LOGICAL QUANTIFIERS

* logical V and 3 semantics for conditions:
countries where all/at least one city has more than 1000000 inhabitants:
/lcountry[every $p in .//city/population[last()] satisfies $p > 1000000]
/lcountry[some $p in .//city/population[last()] satisfies $p > 1000000]

Quantifiers extend the language to more than navigation
+ the usage and syntax of variables is inherited from XQuery 1.0 (2001),

 quantifiers motivated by the relational calculus
(recall also EXISTS from SQL),

* break with the simplicity of XPath,

» “some”? — the XPath 1.0 comparisons have existential semantics
... when sequences are allowed in the comparison; otherwise the explicit “some” has to
be used:
/lcountry[some $org in //organization satisfies $org/id(@headq) is id(@capital)}/name

» “every” is obviously useful
(remember the usage of relational division in SQL)

224

XPath with XPath 2.0’s logical quantifiers

Compare with relational algebra, relational calculus:

« inside of “[...]", variables and (even nested) quantifiers are allowed:
— selection: filters

— projection: not supported (but inside conditions everything where a projection is used
can be replaced by variables and “and”)

— join: some $x; in expr; satisfies (...(some $x,, in expr,, satisfies subexpr($x;...$x,))...)

— union: “|”, “or”

— non-atomic negation/set difference: not

— universal quantification: “every” or like in SQL via “not some ... not”

= wrt. boolean queries (yes/no) and unary (i.e. result has a single column) queries,
relational completeness is obtained.

* missing: recombination of results (joins, generation of XML structures)
» complex queries are hard to write (and to test)

Exercise

» Give the names of all organizations that have at least one member on each continent.

225

5.2 Aside: Namespaces

The names in an XML instance (i.e., tag names and the attribute names) actually consist of
two parts:

localpart + namespace (which can be empty, as in the previous examples)

Use of Namespaces

» a namespace is similar to a language: defining a set of names and sometimes having a

DTD (if intended as an XML vocabulary).
e.g. “mondial:city”, “bib:book”, “xhtml:tr” “dc:author”, “xsl:template” etc.
used for distinguishing coinciding element names in different application areas.

each namespace is associated with a URI (which can be a “real” URL), and abbreviated
by a namespace prefix in the document.

e.g., associate the namespace prefix xhtml with url http://www.w3.0rg/1999/xhtml.
these things will become clearer when investigating the RDF, RDFS, and Semantic Web
Data Models.

226

USAGE OF NAMESPACES IN XML DOCUMENTS

each element can have (or can be in the scope of) multiple namespace declarations
(represented by a node in the data model, similar to an attribute node).

namespace declarations are inherited to subelements

the element/tag name and the attribute names can then use one of the declared
namespaces.
By that, every element can have one primary namespace and “knows” several others.

Alternatives:

. the elements have no namespace (e.g. mondial),

the document declares a default namespace (for all elements (not the attributes!) that do
not get an explicit one (often in XHTML pages)),

elements have an explicit namespace (multiple namespaces allowed in a document; e.g.
an XSL document that operates with XHTML markup and “mondial:” nodes).

(2) and (3) are semantically equivalent.

... see next slides.

227

EXPLICIT NAMESPACE IN AN XML DOCUMENT

<xh:html xmlns:xh="http://www.w3.org/1999/xhtml">
<xh:body>
<xh:h3>Header</xh:h3>
<xh:a href="http://www.informatik.uni-goettingen.de">IFI</xh:a>
</xh:body>
</xh:html>

[Filename: XML-DTD/xhtml-expl-namespace.xml]
» Note: attribute is not in the HTML namespace!

This is actually already not XPath, but a simple XQuery query:

declare namespace ht = "http://www.w3.org/1999/xhtml";
/ht:html//ht:a/string(@href)

[Filename: XPath/xhtml-query.xq]

» Note: the namespace must be used in the query,
i.e., “ht:html” is different from just “html”

* more accurate, it means something like <{http://www.w3.0rg/1999/xhtml}html>...</...>
since not the chosen namespace prefix matters, but only the URI assigned to it.

228

Two EXPLICIT NAMESPACES IN AN XML DOCUMENT

» “Dublin Core” defines a vocabulary for metadata description of resources (here: of XML
documents); cf. http://dublincore.org/documents/dces/

<xh:html xmlns:xh="http://www.w3.org/1999/xhtml"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<xh:head> <dc:creator>John Doe</dc:creator>
<dc:date>1.1.2000</dc:date> </xh:head>
<xh:body> ... </xh:body> </xh:html>

[Filename: XML-DTD/xhtml-expl-namespaces.xml]

declare namespace ht = "http://www.w3.org/1999/xhtml";
declare namespace dc = "http://purl.org/dc/elements/1.1/";
/ht:html//dc:creator/text ()

[Filename: XPath/xhtml-dc-query.xq]

» the document is not valid wrt. the XHTML DTD since it contains additional “alien”
elements.
(combination of languages is a problem in XML — this is better solved in RDF/RDFS)

* in RDF, dc:creator from above expands to the URI
http://purl.org/dc/elements/1.1/creator.

229

(DIFFERENT) DEFAULT NAMESPACES IN AN XML DOCUMENT

 a Default Namespace can be assigned to an element (and inherited to all its subelements
where it is not overwritten):

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<head> <dc:creator>John Doe</dc:creator>
<date xmlns="http://purl.org/dc/elements/1.1/">1.1.2000</date> </head>
<body> ... </body> </html>

[Filename: XML-DTD/xhtml-def-namespaces.xmi]

"http://www.w3.org/1999/xhtml" ;
declare namespace dc = "http://purl.org/dc/elements/1.1/";
/ht:html/ht:head/dc:date/text ()

declare namespace ht

[Filename: XPath/xhtml-dc-def-query.xq]

230

NAMESPACES AND ATTRIBUTES

« Namespaces are not inherited to attributes in any case. If an attribute should be
associated with a namespace, this must be done explicitly:

<ht:html xmlns:ht="http://www.w3.org/1999/xhtml">
<ht :body>
<ht:a href="1+" ht:href="2-">IFI</ht:a>
<x:a xmlns:x="http://www.w3.0rg/1999/xhtml" href="3+" x:href="4-">IFI</x:a>
IFI
</ht:body> </ht:html>

[Filename: XML-DTD/namespaces-attr.xml]

declare namespace ht = "http://www.w3.org/1999/xhtml";
/ht:html//ht:a/Chref/string()

[Filename: XPath/namespaces-attr-query.xq]
« the “HTML-correct” attributes “1+”, “3+”, and “5+” are returned,

* the query /ht:html//ht:a/@ht:href/string() returns the “wrong” attributes “2-”, “4-”, and “6-".

231

DECLARING NAMESPACES IN THE DTD DOCUMENT

* introduce default namespace in the DTD as attribute of the root element (e.g. in the W3C
XHTML DTD) described at
https://www.w3.org/TR/xhtmll/dtds.html#a_dtd_XHTML-1.0-Strict

<!ELEMENT html C(head, body)>
<!ATTLIST html
xmlns %URI; #FIXED 'http://www.w3.org/1999/xhtml' >
« an XHTML instance (or subtree, cf. Slide 240) loading this DTD automatically extends to:
<html xmins="http://www.w3.0rg/1999/xhtml”> <body> ... </body></html>

* introduce explicit namespaces as attribute of the root element:

<IELEMENT html (head, body)>
<IATTLIST html xmins:xh %URI; #FIXED ’http://www.w3.0rg/1999/xhtml’ >

This is extensively used with RDF/XML in the Semantic Web.

232

DECLARING A DEFAULT NAMESPACE IN XQUERY

XQuery allows to declare default namespaces for elements and for functions:
« are then added to each element and function step, respectively;

+ not for attributes (recall that namespaces from elements are not inherited to attributes).
(cf. Slide 231)

declare default element namespace "http://www.w3.org/1999/xhtml";
/html//a/@href/string()

[Filename: XPath/namespaces-default-query.xq]
* the “HTML-correct” attributes “1+”, “3+”, and “5+” are returned,

* the equivalent query is /h:html//h:a/@href/string().

233

ExcLusIVE CANONICAL XML

» Required for some applications (e.g., usage of XMLLiteral values in the “Jena” Semantic
Web Framework)

« XML fragments/subtrees must be processable without their context — thus, namespaces
must be present at appropriate levels in the tree.

* Details: http://www.w3.org/TR/xml-exc-c14n/

* in case you ever need it: can be obtained with xmllint -exc-c14n x.xml > y.xml
(and analogously by other tools)

234

5.3 Aside: XML Catalogs

(cf. introductory note at Slide 163)

Accessing an XHTML document that contains a reference to W3Cs XHTML DTD at
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd via software (other than a
browser) fails since the DTD is not accessible.

» an XML catalog is a dictionary uri—accessible_url:

» whenever the resource identified by uri is referenced, take the resource that is actually
accessible at accessible _url (usually a local copy of the item).
— DTDs
— entity references (cf. Slide 185),
— agraphics for an HTML , e.g. a company’s logo

— anything for an XML Inclusion (XInclude; cf. Slide 491)

» Software then uses a Resolver instance.

235

XML Catalog

« XML catalogs are XML documents themselves

+ a catalog contains different subelements

« default catalog at /etc/xml/catalog (only root can change it),

« usage from several tools: put it in a central place (e.g., ~/teaching/ssd/XMLCatalog),

« if a tool or a servlet uses an own catalog (e.g., the XQuery Web interface) it can have an
own, local one.

 put the DTDs (etc.) that should be made accessible somewhere, e.g., next to the catalog
in a "DTD" subdirectory.

<?xml version="1.0"7>
<IDOCTYPE catalog PUBLIC "-//0ASIS//DTD XML Catalogs V1.0//EN"
"file:///usr/share/xml/schema/xml-core/catalog.dtd">
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
<system systemId="http://www.w3.org/TR/xhtml1/DTD/xhtmll-strict.dtd"
uri="DTD/xhtmll-strict.dtd"/>
<system systemId="http://www.w3.org/TR/xhtml1/DTD/xhtmlil-transitional.dtd"
uri="DTD/xhtmll-transitional.dtd"/>
</catalog> [Filename: ~dbis/XMLTools/XMLCatalog/catalog]

236

Required files for XHTML

» xhtml1-strict.dtd, xhtml1-transitional.dtd,

« xhtml-lat1.ent, xhtml-symbol.ent, xhtml-special.ent
Using the XML Catalog

+ software comes with a resolver, or

+ get the XML Commons Resolver (resolver.jar) from Apache, put it somewhere (e.g. also
below the XMLCatalog directory).

« since version 9.4 (Dec. 2011), saxon uses local copies of the W3C DTDs automatically.

« when (non-XHTML) XML documents with public DTD references are used frequently,
copying them and using a catalog entry saves time and Web traffic.

« Technical description for using catalogs in saxon can be found at
http://sourceforge.net/apps/mediawiki/saxon/index.php?title=XML_Catalogs
and http://saxonica.com/documentation/sourcedocs/xml-catalogs.xml.

237

Saxon Call with Catalog until 9.3
« Java -D: set environment variable for java

 saxon -r,-x allows to refer to appropriate classes explicitly

java -cp $DBIS/XML-Tools/saxon/saxon9.jar:$DBIS/XML-Tools/XMLCatalog/resolver. jar \
-Dxml.catalog.files=$DBIS/XML-Tools/XMLCatalog/catalog \

net.sf.saxon.Query \

-r:org.apache.xml.resolver.tools.CatalogResolver \

-x:org.apache.xml.resolver.tools.ResolvingXMLReader \

catalogtest.xq [Filename: XMLCatalog/saxon.call.old]

« (for saxonXSL: -t, -x, -y)

Shorter with -catalog (Saxon 9.4)

java -cp $DBIS/XML-Tools/saxon/saxon9.jar:$DBIS/XML-Tools/XMLCatalog/resolver.jar \
net.sf.saxon.Query \

-catalog: $DBIS/XML-Tools/XMLCatalog/catalog \

catalogtest.xq [Filename: XMLCatalog/saxon.call]

doc('http://wuw.dbis.informatik.uni-goettingen.de/"')

[Filename: XMLCatalog/catalogtest.xq]

238

EXAMPLE: QUERYING XHTML IN PRESENCE OF NAMESPACES

XHTML DTD at http://www.w3.org/TR/xhtm11/DTD/xhtmll-transitional.dtd contains:

<!ELEMENT html (head, body)>
<IATTLIST html id ID #IMPLIED
xmlns %URI; #FIXED 'http://www.w3.org/1999/xhtml'>

Sample XHTML files:
» DBIS Web pages:

declare namespace h = "http://www.w3.0rg/1999/xhtml";
doc('http://www.dbis.informatik.uni-goettingen.de/')//h:1i/h:a/@href/string()

[Filename: XPath/web-queries.xq]

239

5.4 Use Case: Mondial with Embedded HTML Fragments

+ define a default namespace for Mondial

— is then inherited to all subelements (except they overwrite it, as the html element will
do...)

— could also be declared as FIXED in the DTD (cf. the XHTML DTD)

* just use (XHTML-valid) html subelements (their default namespace URL will be FIXED in
the original W3C XHTML DTD), inside the city elements,

» non-default namespace prefixes can be used, but then prefix:localname acts in the DTD

like a name that contains a “.” — the prefix cannot be changed.

240

Use Case: Mondial with Embedded HTML and Dublin Core Fragments

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE mondial SYSTEM "monhtml.dtd">
<mondial xmlns="https://www.semwebtech.org/mondial/10/">
<country car_code="D" capital="berlin">
<name>Germany</name>
<html><head><title>GERMANY</title></head><body><p>...</p></body></html>
<city id="berlin"><name>Berlin</name>
<dc:author>John Doe</dc:author>
<html><head><title>BERLIN</title></head><body><p>...</p></body></html>
</city>
<city id="hambg"><name>Hamburg</name>
<dc:author>Jane Doe</dc:author>
<html><head><title>HAMBURG</title></head><body><p>...</p></body></html>
</city>
</country>
</mondial> [Filename: XQuery/monhtml.xml]

» Next slide: DTD that defines the XHTML default namespace by a FIXED attribute for the
<html> element

241

The Mondial+HTML DTD
» extend the Mondial DTD:

— allow for an xmlns attribute (could be FIXED),

allow nested html elements where needed,

— add the city’s dc:author subelement declaration stuff (with hardcoded prefix),
reference the XHTML DTD (by its URL) using a SYSTEM external entity.

<!ELEMENT mondial (countryx*)>
<!'ATTLIST mondial xmlns CDATA #IMPLIED>
<!ELEMENT country (name+, html?, city+)>
<V'ATTLIST country car_code ID #REQUIRED
capital IDREF #IMPLIED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT city (name+, dc:author?, html?)>
<!ATTLIST city id ID #REQUIRED>

<!ELEMENT dc:author (#PCDATA)>
<VATTLIST dc:author xmlns:dc CDATA #FIXED 'http://purl.org/dc/elements/1.1/'>

<!ENTITY % htmldtd SYSTEM 'http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd'>
%htmldtd; [Filename: XQuery/monhtml.dtd]

242

Validate Mondial+HTML wrt. both DTDs

* use saxon to validate — it will automatically use its internal XHTML DTD

« xmllint tries (unsuccessfully) to access the W3C DTD. For it, a dirty workaround is

<!ENTITY % htmldtd SYSTEM 'myxhtml.dtd'>
%htmldtd;

and copy the W3C DTD to this local file (and download or remove references at its

beginning).

243

Querying Mondial+HTML
« The XHTML DTD defines (fixed)

<!ELEMENT html (head, body)>
<VATTLIST html xmlns %URI; #FIXED 'http://www.w3.org/1999/xhtml'>

« in this example mondial also defines a namespace.

* note that the “dc” prefix cannot be changed since it is hardcoded in the monhtml.dtd.

declare namespace mon="https://www.semwebtech.org/mondial/10/";

declare namespace h="http://www.w3.org/1999/xhtml";

declare namespace dc="http://purl.org/dc/elements/1.1/";
/mon:mondial//mon:city[dc:author]//h:title [Filename: XQuery/monhtml.xq]

« recall that the element namespace is not applied to the attributes:

declare namespace mon="https://www.semwebtech.org/mondial/10/";
declare namespace h="http://www.w3.org/1999/xhtml";
/mon:mondial//mon:country/id(@capital) /h:html/h:head/h:title

[Filename: XQuery/monhtmi2.xq]

244

5.5 XPath: Conclusion

XPath without variables
» simple (and cheap) navigation language

only following a “main path” for addressing sets of nodes (including semijoins)

not “give all pairs of ..

selection/filtering: yes

projection/reduction: no. Only complete nodes can be selected

* join/combination: no. Only semi-joins can be expressed in the conditions
 subqueries: inside the conditions as semijoins

» restructuring of the results: no

= only a fragment of a query language for addressing nodes.
— compared with SQL, XPath allows only for “SELECT *” and a unary “FROM” clause

— XQL (Software AG, 1998/1999) for some time followed (as one of the predecessors of
XPath) an approach to add join variables and constructs for projection and
restructuring/grouping to the path language (cf. Slides 251 ff).

245

XPath (3.0) with “some”/“every” and Variables (cf. Slide 224)
» relational completeness (cf. SQL, relational calculus) inside filters
» still no generation of structures/joins on the result level.

Exercise

Consider the following query that yields the highest mountain in Africa:
(without variables, using semijoins)

doc('mondial.xml')//mountainl[

id(id(located/@country)/encompassed/@continent) /name="'Africa’'
and
not (number(elevation) <

//mountain[

id(id(located/@country) /encompassed/@continent) /name="'Africa']/elevation)]

/name [Filename: XPath/highestmountain.xq]

Give the names of all mountains that are the highest ones on the continent where they are
located.

(two properties of the same object (elevation, continent) must be compared independently —
requires variable binding)

246

IMPORTANCE OF XPATH IN THE XML-WORLD

* adressing mechanism for nodes in XML documents
* navigation in the tree structure

* serves as base for different concepts:
— XQuery
— XSL/XSLT: stylesheets, transformation language
— other query languages
— XML Schema
— [XPointer/XLink — rarely used]

247

