
11.10 Web Services (Overview)

• History: RPC (Remote Procedure Call)

– call a specific procedure at a specific server
(client stub→marshalling→message→unmarshalling→ server stub→ server).

• History: OMG Standard (Object Management Group) CORBA (1989, “Common Object
Request Broker Architecture”; cf. Slides 38 ff.):

– Middleware, usually applied in an Intranet,

– central ORB bus where services can connect,

– service registry (predecessor of WSDL and UDDI ideas),

– description of service interfaces in object-oriented style
(IDL - interface description language, similar to C++ declarations),

– exchanging objects between services via OIF (Object Interchange Format),

⇒ RPC abstraction (call abstract functionality) by the ORB as a broker.

• XML-RPC and SOAP+WSDL+UDDI are XML-based variants of RPC+Corba.

• SOA (“Service-Oriented Architecture”).
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HTTP: HYPERTEXT TRANSFER PROTOCOL (OVERVIEW)

• HTTP 0.9 (1991), HTTP 1.0 (1995), HTTP 1.1 (1996).

• Application Layer Protocol [OSI Level 7], based on a (reliable) transport protocol (usually
TCP “Transmission Control Protocol” [ISI/OSI Level 4] that belongs to the “Internet
Protocol Suite” (IP))
[see Telematics lecture].

• Request-Response Protocol: open connection, send something, receive response (both
can be streamed), close connection.

• well-known from Web browsing and HTML:
send (HTTP GET) URL, get URL (=resource) contents
⇒ this is already a (very basic) Web Service
also: send HTTP POST URL+Data (Web Forms) get answer
⇒ this is also a (still basic) Web Service; “Hidden Web”

• common protocol used for communication with and between Web Services ...
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INFRASTRUCTURE ARCHITECTURE

Web Server

• hosts different things; amongst them

– “simple” HTML pages, binaries (pdfs, pictures, movies, ...)

– Web Services, i.e. software artifacts that implement some functionality.

• Example: Apache Web Server.

• not the topic of this lecture (→ technical infrastructure).

(Java) Servlet

• a piece of software that should be made available as a Web Service,

• implements the methods of the Servlet interface
(Java: javax.servlet.http.Servlet, subclasses GenericServlet, HttpServlet)

Web (Service|Servlet) Container

• a piece of software that extends a Web Server with infrastructure to provide the runtime
environment to run servlets as Web Services,

• hosts one or more Web Services that extend the container’s base URL
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WEB SERVLET CONTAINER [INCORRECT: WEB SERVICE CONTAINER]

• Servlets are the pieces of software that are used to provide services.

• The servlets’ code must be accessible to the Web Servlet Container, usually located in a
specific directory,

• WSC controls the lifecycle of the servlets: (init(), destroy())

• maps the incoming communication from ports via the URLs to the appropriate servlet
invocation.
Container: method service(httpContents), mapped to Servlets’ doGet(httpContents),
doPost(httpContents), (doPut(httpContents)), (doDelete(httpContents)).

• Example: Apache tomcat.

• standalone tomcat: one port (default 8080), one base URL;

• tomcat might be run in a Web Server (Apache), then, multiple base URLs can be mapped
to the same tomcat.

• URL tails do not necessary belong to the same/different Servlets (see next slides)!

⇒ URL tails are just abstract names
(even the internal organization/implementation might change over time)
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ABSTRACTION LEVELS

Goal: abstract from internal software/programming structure of the projects against the
externally visible URLs.

• a Web Service Container contains several “projects” (eclipse terminology) or
“applications”:

– from the programmer’s view, a “project” is an (e.g., eclipse) project,
as a package it is a single .war file,
at the end, it is a subdirectory in the container.
Each project has an (internal) name (its directory name in the container), e.g.
xquery-demo or servletdemo.

• Each project consists of one or more servlets:

– each servlet has an (internal) name (relative to its directory name in the container),
e.g. the servletdemo project contains three different servlets (just due to its
programming as a “silly example”, nothing about efficiency)
(nobody from the outside will see what are the actual names of these servlets)

– each servlet’s code is a class that extends javax.servlet.http.HttpServlet;
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Abstraction Levels: URL mapping

HTTP connections received by the servlet container are internally forwarded to the servlets.

• the Web Service Container has a base url;
http://www.semwebtech.org.
(actually, this is the base URL of an Apache that maps most things to a tomcat)

• Service URLs: http://www.semwebtech.org/xquery-demo,
http://www.semwebtech.org/servletdemo,
http://www.semwebtech.org/services/2016/xml2sql etc.

• the Web Service Container maps relative paths to projects (by tomcat’s server.xml):
/xquery-demo to xquery-demo, and /servletdemo to servletdemo, and
/services/2016/xml2sql to xmlconverter.

• each project’s configuration (in its web.xml) maps URL path tails to servlet ids, and
servlet ids to servlet classes, e.g. for the servletdemo project
/sum to sum-servlet to org.semwebtech.servletdemo.SumServlet,
/format, /all and /reset to format-servlet to org.s.s.FormatServlet,
/makecalls to makecalls-servlet to org.s.s.MakeCallsServlet, and index.html is
the front page served for “/”.

⇒ internal software organization independent from externally visible URLs
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TOMCAT BASIC INSTALLATION

• See course Web page for detailed instructions with servlet examples.

• Web Servlet Container with simple Web Server: Download and install Apache Tomcat

– can optionally, but not necessarily be combined with the Apache Webserver,

– can be installed in the CIP Pool

• set environment variable (catalina is tomcat’s Web Service Container)

export CATALINA_HOME=~/apache-tomcat-x.x.x

• configure server: edit

$CATALINA_HOME/conf/server.xml:
<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
<Connector port="8080" .../>

• start/stop tomcat:

$CATALINA_HOME/bin/startup.sh
$CATALINA_HOME/bin/shutdown.sh

• logging goes to

$CATALINA_HOME/logs/catalina.out
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Tomcat: Servlet Deployment

• upon startup, tomcat deploys all servlets that are available in

$CATALINA_HOME/webapps

(considering path mappings etc. in $CATALINA_HOME/conf/server.xml)

Two alternatives how to make servlets available there:

• create a myproject.war file (web archive, similar to jar) and copy it into
$CATALINA_HOME/webapps.
(e.g. via build.xml targets "dist" and "deploy")
(tomcat will unpack and deploy it upon startup)
When replacing an old war file, delete the old unpacked stuff also.

• create a directory myproject, copy everything that is in the WebRoot directory there.
(e.g. build.xml target "deploy"; cf. Demo-Servlet)

596



Tomcat’s conf/server.xml

The URL paths to the projects can be defined to differ from the defaults (path name =
webapps-directory name)

This is done in the <Host> element:

<Host>
<Context path="/services/2016/xml2sql" reloadable="false" docBase="xmlconverter"/>
:

</Host>

• if the project name is the same as the path (e.g. xquery-demo and servlet-demo), the
entry can be omitted
(usually, software projects do not have the same name, but distributed .war archive files
can be renamed accordingly).

• reloadable: automatically reloads the servlet if the code is changed (e.g. a new .war
archive).
Should be done only during development.

• the path attribute is key. There can be multiple paths that are mapped to the same
docBase.

597

GENERAL SERVLET (ECLIPSE) PROJECT DIRECTORY STRUCTURE

MyProject: project directory (anywhere outside tomcat)

MyProject/build.xml: the ant file for compiling and deploying – see later.

MyProject/src: the .java (and other) sources

MyProject/WebRoot: roughly, all this content is copied to the Servlet Container.
Plain HTML pages like index.html can be placed here.

MyProject/WebRoot/WEB-INF: the whole content of MyProject/WebRoot except WEB-INF
is visible later (e.g., HTML pages can be placed here); the contents of WEB-INF is used
by the Servlet Container.

MyProject/WebRoot/WEB-INF/web.xml: web application configuration,

MyProject/WebRoot/WEB-INF/classes: compiled binary stuff,

MyProject/WebRoot/WEB-INF/lib: used jars (except javax.servlet.jar – tomcat has own
classes for servlets, this would create conflicts),

MyProject/lib: jars that are needed for building, but should not be copied to the Servlet
Container (put javax.servlet.jar here),

build path: all jars in MyProject/lib + MyProject/WebRoot/WEB-INF/lib
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SERVLET-DEMO EXAMPLE

Basic demonstration of servlet programming [servletdemo.zip on course Web page]

• The basic functionality is simple:
a form where the user enters two numbers, and the servlet computes the sum
(SumServlet),
[HTML form with simple HTTP GET from servlet, simple answer]

• The same (added to the same form): the result is presented in an HTML table
(FormatServlet),
[HTML page as an answer]

• The same again (added to the same form): the numbers are taken, submitted to the
SumServlet, and all three are submitted to the FormatServlet and a HTML page is
created as answer (MakeCallsServlet).
[HTML form with simple HTTP POST to servlet, inter-Servlet HTTP POST]

• The Demo collects all formatted tables and can output them.
[persistent information, multiple GETs in the same servlet]

• it can be reset.
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THE PROJECT’S WEB.XML (EXCERPT)

<web-app>
<!-- Define servlet names and associate them with classfiles -->
<servlet>

<servlet-name>makecalls-servlet</servlet-name>
<servlet-class>org.semwebtech.servletdemo.MakeCallsServlet</servlet-class>
<init-param>

<param-name>myURL</param-name>
<param-value>http://localhost:8080/servletdemo/</param-value>

</init-param>
</servlet>
<servlet> ... </servlet>
<!-- define mapping of path tails to servlets -->
<servlet-mapping>

<servlet-name>makecalls-servlet</servlet-name>
<url-pattern>/makecalls</url-pattern>

</servlet-mapping>
<servlet-mapping> ... </servlet-mapping>
<!-- optionally: define default html page -->
<welcome-file-list>

<welcome-file>index.html</welcome-file>
</welcome-file-list>

</web-app>
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Comments: web.xml

• <servlet>:

– a short, abstract name (unique)

– which java class

– optional: init parameters that can be read in the init(ServletConfig cfg) method
with cfg.getInitParameter(param-name );

* allows some adaptation of “foreign” servlets by only editing the web.xml, without
recompiling Java code (e.g. if a .war contains only binaries).

* if servlets (like MakeCallsServlet) need to call other servlets or use files, they can be
told about their actual URLs.

* directories where files can be found locally can be specified:
<init-param>

<param-name>examplesDir</param-name>
<param-value>/home/may/teaching/ssd/XQuery/</param-value>

</init-param>

• <servlet-mapping>:

– url-pattern: key, things like /* allowed,

– multiple patterns can be mapped to the same servlet.
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COMMUNICATION WITH SERVLETS: HTTP METHODS GET AND POST

The servlets (virtually) run continuously in the Servlet Container and wait for incoming calls ...

HTTP GET and POST: request-response paradigm

HTTP GET should be used only if invocation does not change

• Request consists only of URL+parameters:

http://www.example.org/mondial?type=city&code=D&name=Berlin&province=Berlin

HTTP POST should be used if it has side effects or changes the state of the Web Service

• Request URL consists only of the plain URL,

• parameters (e.g. queries using forms) or any other information is sent via a stream

⇒ often also queries use POST

Response: always as a stream.

• other HTTP methods PUT (resource), DELETE (resource) are used in REST
(Representational State Transfer) “architectures”
(e.g. the eXist XML database and document management system uses REST)
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Content of the Response

• if the service is invoked via the browser (forms; e.g. the XQuery-Demo), the response
contents is the HTML code that is shown as "Web page" to the user.

• The “page” that is shown initially:

– static index.html in the WebRoot directory (servletdemo), or

– answer dynamically generated by the servlet on the first GET request (HTTP GET
http://www.semwebtech.org/xquery-demo).

• if the service is invoked by another Web Service, the answer contains data (this course:
in XML form).

Simple GET: “Content” of the Request

• A simple GET (from filling a Web form) carries the parameters as extension to the URL:
http://www.semwebtech.org/xquery-demo?query-text=//country[name=’Germany’]
https://univz.uni-goettingen.de/qisserver/?search=3&raum.dtxt=2.101
(simplified)
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HTML Forms: invoking Web Services via Browser

The following elements (and several others) can be used in HTML pages:

<form action="./sum" method="get"> will call thisURL/sum, HTTP GET

<input type="text" name="a"/> form field to type in parameter “a”

<input type="text" name="b"/> form field to type in parameter “b”

<input type="submit"/> click here to submit HTTP GET ...

</form> with the parameters a and b

• the call URL is e.g. http://localhost:8080/servletdemo/sum?a=4&b=5

• an HTML page can contain multiple separate forms, to the same or different
URLs/“actions”,

• cf. servletdemo/WebRoot/index.html
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SERVLET PROGRAMMING

• event-driven (cf. SAX): on incoming HTTP connections, the servlet container calls the
servlets’ doGet() (=react-on-get) and doPost() (=react-on-post) methods.

public class MyServlet extends HttpServlet
{ public void init(ServletConfig cfg) throws ServletException

{ // initialization ...
// read web.xml init params by cfg.getInitParameter(...);

}
protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException { ... }
protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException { ... }
}

• doGet() and doPost() both read the HttpServletRequest and write the
HttpServletResponse object,

• the HttpServletRequest differs for GET (simpler) and POST (including a stream),

• the HttpServletRequest always provides a stream.
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Recall:

• the distribution of connection URLs to projects is done according to tomcat’s server.xml,

• the distribution inside of the project to servlets is done according to the project’s web.xml,

• multiple URLs can be mapped to the same method (doGet/doPost) of the same servlet
(Demo: FormatServlet)

⇒ must be analyzed in doGet() and doPost().

• Request.getPathInfo(): contains the tail of the URL path after the mapping by web.xml
(non-null if <url-pattern>/*</url-pattern>)

• Request.getServletPath(): contains the tail of the URL path that is exploited for mapping
according to the web.xml.

doGet/doPost(HttpServletRequest req, HttpServletResponse resp) throws ...
{ String path = req.getPathInfo();

if (path == null) path = req.getServletPath();
if (path.startsWith("/reset")) { ... }
else if (path.startsWith("/format")) { ... }
else if (path.startsWith("/all")) { ... }

}
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Servlet Programming: Read Parameters and Contents

• GET and POST Requests can have parameters; POST can also have contents

• in doGet() and doPost() for accessing parameters:
java.util.Map<java.lang.String, java.lang.String[]> mymap =

req.getParameterMap();
String strA = req.getParameter("a"); (always Strings!)

• in doPost() for reading contents:
ServletInputStream in = req.getInputStream();
retrieves the body of the (POST) request (as binary data) using a ServletInputStream,
where any Reader (e.g. a StAX XMLStreamReader) can be put on
(usually, set reader’s encoding to UTF-8).
java.io.BufferedReader r = req.getReader(); retrieves the body of the (POST)
request as character data (according to character encoding decl of the body) using a
BufferedReader.
For instance, one can create a JDOM from the contents:

BufferedReader in = req.getReader();
SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(in);
Element root = doc.getRootElement();
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Servlet Programming: Write into a Response

• doGet() and doPost() provide the HttpServletResponse object of the HTTP connection,

• it consists mainly of a stream,

• The requesting service (Browser, Web Service) has a Reader waiting on the stream (see
next slide).

• PrintWriter out = resp.getWriter();
yields a Writer to the response – send character text (or XML events).

• ServletOutputStream os = resp.getOutputStream();
yields an output stream that can directly fed with write(), print(), println() or can be
connected to another stream. Don’t forget os.flush() and os.close().
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Invoking a new HTTP Connection (to a Web Service)

(servletdemo: MakeCallsServlet)

• (Http)UrlConnection object is created by invoking the openConnection method on a URL;

• below: urlstr is a string, in the GET case already with parameters.

HttpURLConnection.setFollowRedirects(true); // static
HttpURLConnection con = (HttpURLConnection) new URL(urlstr).openConnection();
con.setRequestMethod("GET or POST");

con.setDoInput(true); // can be omitted - default is true
con.setDoOutput(true); // default is false(!), for "get" it's OK
con.setRequestProperty("Connection", "keep-alive"); // is answer takes longer
con.setRequestProperty("Content-type", ...);
con.setRequestProperty("Accept", "text/xml");

con.connect();
-- use con.getOutputStream() to write contents of the request
con.getOutputStream().close();
-- use con.getInputStream() to read contents of the response
-- BufferedReader in =

new BufferedReader(new InputStreamReader(con.getInputStream(), "UTF-8"));
con.getInputStream().close();
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Code: HTTP GET

• Parameters given with the URL:

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
public class HttpGetSimple {

public static void main(String[] args) { try {
BufferedReader br = null;
URL inputURL = new URL("http://www.semwebtech.org/xquery-demo/" +

"?action=query&query-text=//country[1]");
HttpURLConnection con = (HttpURLConnection) inputURL.openConnection();
con.setRequestMethod("GET");
con.connect();
String s = ""; StringBuffer res= new StringBuffer();
br = new BufferedReader(new InputStreamReader(con.getInputStream(), "UTF-8"));
while ((s = br.readLine()) != null) { res.append(s+ "\n"); }
br.close();
System.out.println(res);

} catch (Exception e) { e.printStackTrace(); } }} [Filename: java/HttpGetSimple.java]
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Code: HTTP POST – Parameters in the Request

• https://docs.oracle.com/javase/tutorial/networking/urls/readingWriting.html
import java.io.BufferedReader; import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection; import java.net.URL;
public class HttpPostSimple {

public static void main(String[] args) { try {
BufferedReader br = null;
URL inputURL = new URL("http://www.semwebtech.org/xquery-demo/");
String params = "action=query&query-text=//country[1]";
HttpURLConnection con = (HttpURLConnection) inputURL.openConnection();
con.setRequestMethod("POST");
con.setDoOutput(true); // default is false(!)
con.connect();

OutputStreamWriter wr = new OutputStreamWriter(con.getOutputStream());
wr.write(params);
wr.flush(); wr.close();

String s = ""; StringBuffer res= new StringBuffer();
br = new BufferedReader(new InputStreamReader(con.getInputStream(), "UTF-8"));
while ((s = br.readLine()) != null) { res.append(s+ "\n"); }
br.close(); System.out.println(res);

} catch (Exception e) { e.printStackTrace(); } }}
[Filename: java/HttpPostSimple.java]
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HTTP Access in the Data Management Area

• HTTP GET and POST are important means to access “Deep Web” data via queries
against forms, and “Linked Open Data” (LOD) (RDF data, [Semantic Web lecture]).

Alternative: [not tested]

• Connection getContent() method:
returns an Object whose type is determined by the the content-type header field of the
response. Uses a ContentHandler to convert data based on its MIME type to the
appropriate class of Java Object.

• maybe useful for binary types?

• or even URL.getContent() as a shortcut for openConnection().getContent();
String foo = (String) url.getContent();
seems to be useful for plain GET on HTML pages;

• for XML content, using the stream seems to be more useful
(→ SAXBuilder→ JDOM, or → StAX)
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Notes on Handling Character Encodings

• default for WebServices is ISO-8859-1 (covers german umlauts, swedish etc.)

• then, for HTML forms, set also
<form method=“get/post” accept-charset=“ISO-8859-1”>

• UTF-8 also covers chinese, persian, etc. (localnames in Mondial)

• Web Service side:

– if HTTP GET is used, request character encoding can only be set globally
(Apache tomcat: URIEncoding attribute of the <Connector port=“...”> element in
server.xml to UTF-8).

– HTTP POST: request.setCharacterEncoding(“UTF-8”) before reading parameters or
contents (e.g. DBIS XQuery and SQL Web Interfaces);

– use also response.setCharacterEncoding(“UTF-8”)
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DATA EXCHANGE: AN INTEGRATED XML PERSPECTIVE

• HTTP connections are Unicode.

• exchanging XML via HTTP basically works on its serialization

– explicitly working with Reader→String/StringBuffer and String/StringBuffer→Writer is
possible, but often not necessary;

– in:

* let a SAXBuilder build a JDOM,

* put SAX or an StAX XMLEventReader on the InputStream,

* put a JAXB Unmarshaller on the InputStream,

* put the Digester on the InputStream,

* cf. Examples where these were put on the FileInputStream for mondial.xml.

– out:

* serialize XML by putting an XMLEventWriter on the OutputStream,

* let JAXB write into it, ...
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A Note on Multithreading

• servlets can be instantiated by the container permanently or on-demand.

• if multiple requests for the same servlet come in, the servlet container can run multiple
threads on the same instance of a servlet.

– be careful with instance variables,

– implement mutual exclusion if necessary

• the servlet container can also create (and remove) additional instances of a servlet.
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PHP IN TOMCAT

• Tomcat is Java-based,

• Embedded PHP in HTML files or pure PHP is not executed by default.

• Name HTML files that include embedded PHP (cf. Slide 186) filename.php,

• there are several implementations of PHP in Java,

• e.g. see https:
//stackoverflow.com/questions/779246/run-a-php-app-using-tomcat/779319 and
http://www.studytrails.com/blog/
php-on-a-java-app-server-apache-tomcat-using-quercus/
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