
Chapter 2
Database Concepts and
Extensions

• The notion of “semistructured data (SSD)” has mainly been coined by the “TSIMMIS”
project (The Stanford-IBM Manager of Multiple Information Sources, 1995-2000;
persons: J. Ullman, H. Garcia-Molina, J. Widom, Y. Papakonstantinou).

• The problem has already been investigated before in several areas and projects.

15

WHY SEMISTRUCTURED DATA?

... mainly two requirements:

1. data integration from different sources
(late 1980s/early 1990s):

– increasing networks

– combination of contents of several databases

* multi-database-systems

* federated database systems

* different schemata

* mostly only different relational schemata,
· partially also under the aspect of integration of metadata into the DML – this

aspect is originally independent from semistructured data.

* sometimes different data models (“legacy”-databases according to earlier data
models)

* since mid-90s increasingly data from the Web

16

WHY SEMISTRUCTURED DATA?

2. storage of “unregular” data:
no fixed/homogeneous/known schema, many null values (e.g. biochemistry)

– data exchange (B2B); standard formats e.g. for suppliers in automobile industry

– partly also full-text portions,

– management of document content

* coarsely structured
SGML (special form: HTML)

– annotated binaries (graphics, audio, video, etc.)

– mixed forms between databases and documents

* collections: (tax) laws, partially in SGML

* health care and clinical information systems

17

THE EVOLUTION TOWARDS XML

The evolution in the area of semistructured data and XML combined concepts, experiences
and developments from many previous approaches:

• network data model, hierarchical model (“legacy”-databases),

• relational databases,

• object-oriented databases,

• distributed and federated databases,

• data integration (purely relational environments, or mixed ones),

• document management.

Different lines of evolution have been brought together with XML & friends:

⇒ (nearly) nothing new, but a perfect combination!

Textbook on “Databases” in general (but without document management and XML):

• R.Elmasri, S.Navathe: “Foundations of databases”/“Grundlagen von
Datenbanksystemen”. Pearson Studium, 3rd edition, 2002.

18

2.1 Early Databases: the Network Data Model

Situation 1960: first primitive “high-level” programming languages for “calculations”

• FORTRAN 1957: “formula translator”

• COBOL 1959: “common business-oriented language”

Goal: somehow store and organize lots of data:

• first development in the database system IDS (Integrated Data Store) at General Electric
(Bachman & Williams, 1964; Turing-Award 1973)

• specification of the “Conference on Data Systems Languages Data Base Task Group
(CODASYL)”, 1971.

• products: e.g. VAX-DBMS (Digital Equipment)

19

NETWORK DATA MODEL

• data is stored in data records,

• classified by data record types, with attributes (name and datatype to be specified).

Country

Name Code Population Area . . .

City

Name Population . . .

• Sample data records:

“Germany” “D” 83536115 356910 . . . “Berlin” “3472009” . . .

• So far, the same as the mapping of entity types in the relational model.

• difference: the organization of the records (and their relationships) in the database ...

20

RELATIONSHIPS: SET TYPES

Relationships are represented as sets: “all B that are in a given relationship with a certain A”
(E.g. all cities in a given country)

Definition of set types:

• name of the set type

• owner record type (“owner”; “where the relationship starts from”)

• member record type (“member”)

A set instance then represents the relationship for exact one owner of type “A”. Each instance
of a set consists of

• a data record of the owner record type

• an ordered set of data records of the member record type

• comparison with XML: parent-children relationship, ordered children, but all of the same
type

• intuitition: not as a set, but as a wire that is fixed at the owner and then pulled through all
members.

21

RELATIONSHIPS: SET TYPES

Graphical representation:
“Bachman Diagram”

Country

Name Code Population . . .

City

Name Population . . .

has_cities has_capital

has_ cities: Germany D 83536115 . . .

Berlin 3472009 . . .

Hamburg 1705872 . . .

Frankfurt 652412 . . .

...

has_ capital: Germany D 83536115 . . .

Berlin 3472009 . . .

• similar sets for France//Paris/Lyon/Marseille/... and France//Paris

• a member record can belong to only one instance of a set of each set type (thus, only
1:N-relationships can be modeled directly)

• n:m relationships: later

22

ENTRY POINTS

• system-owned instances of a set serve as entry points
(e.g. an instance of a set “countries” whose members are the country-data records)

ACCESS OPERATIONS

Access to (and navigation through) the database only via sets.

Actually, this is again an abstract datatype:

• access to the attribute values of a record,

• an iterator (first, next) for traversing the relationships ,

• a selector “find_owner” for inverse relationships.

⇒ the user does not explicitly work with pointers or identifiers, but already uses the semantic
notions of the data model.

23

N:M-RELATIONSHIPS

Cannot be represented by a single set type (analogously for attributed relationships).

• split into a 1:M and an inverse N:1-relationship
Problem: consistency maintenance (symmetry!)

• introduce an auxiliary data record type that represents the relationship, and two set types:

Country

Name Code Population . . .

Organization

Name Abbrev . . .

is_member

type

has_membershas_memberships

• later, there is a mapping from the ER model (1976) to the network model.

24

ORGANISATION OF THE SET TYPES

Each data record contains reference entries for each set type where it belongs to (either as
owner or as member):

• as owner: a “first”-reference, labeled with the name of the set type, pointing to the first
member record

• as member:

– a “next”-reference, labeled with the name of the set type, pointing to the next member
record

– additionally a labeled backwards pointer to the owner of the set instance

– a labeled null pointer if there exists no first/next element.

Exercise 2.1
a) Visualize the model by drawing some country, city and organization data records.

b) Consider the “has_headq”-relationship that describes that organizations have their
headquarters in a city. ✷

25

SOLUTION: NETWORK SCHEMA DIAGRAM

Country

Name Code . . .

Organization

Name Abbrev . . .

membership

type

City

Name Population . . .

headq_in

has_cities has_capital

has_membersis_member

has_hq_in

is_hq_of

26

SOLUTION: INSTANCE LEVEL

SYSTEM•f •f

Country: Germany •n •f •f •f City: Berlin •n •o •n

⊥has_capital
•o

City: Hamburg •n •o

City: Frankfurt •n

: has_city

•o

Country: Belgium •n

:all_countries

•f •f •f City: Brussels •n

:has_city

•o •n

⊥has_capital
•o

Org: EU •n •f membership: (D,EU) •n •o •n •o membership: (B,EU) •n •o •n
. . .

•o

Org: UN •n

:all_orgs

•f membership: (D,UN) •n

:is_member

•o •n •o membership: (B,UN) •n

:is_member

•o •n
. . .

•o

all_countries

all_countriesall_orgs

all_orgs

has_cities

has_capital

has_cities

has_capital

is_member

is_member

has_members

has_members

27

DATA DEFINITION LANGUAGE: EXAMPLE

RECORD NAME IS country
DUPLICATES ARE NOT ALLOWED FOR Code

Name TYPE IS CHARACTER 20
Code TYPE IS CHARACTER 4
Population TYPE IS NUMERIC INTEGER
Area TYPE IS NUMERIC INTEGER

RECORD NAME IS city
Name TYPE IS CHARACTER 25
Population TYPE IS NUMERIC INTEGER

SET NAME IS all_countries
OWNER IS SYSTEM
MEMBER IS country

SET NAME IS has_cities
OWNER IS country
MEMBER IS city

28

QUERY AND DATA MANIPULATION LANGUAGE

• record-at-a-time DML

• based on iterators (common design pattern/interface, e.g. in Java!) over sets

– commands for navigation, access and data manipulation

– embedded into a host language (COBOL, PL/I, later ... Pascal, C)

• “Current of” (cf. PL/SQL: “cursor”) that points to an instance of a record/set type in the DB

– current of each record type

– current of each set type (pointing on either the owner or one of the member records)

– current of run unit (CRU): the record most recently accessed – any record type

• UWA (User Work Area) in the programming language runtime environment

– one variable for each record type (auto-defined from the schema)

– current of ... can be “fetched” into the corresponding UWA record

29

Retrieval and Navigation Commands

Query answering consists of stepwise navigation, carefully tracing currency indicators, and
fetching tuples to the UWA:

• Retrieval: move the CRU into the corresponding UWA record,

• Navigation: navigate by using iterators and currency indicators to specific records and set
owners/members.

30

Search for a Record of a Record Type

• FIND ANY <data record type> [USING <UWA.field.list>]

• FIND DUPLICATE <data record type> [USING <UWA.field.list>]

• tests/loops can be programmed by IF/WHILE DBSTATUS=0 // 0: successfully found

• FIND sets all current of record/set type in which the record participates to that record.
Can be avoided with RETAINING clause.

UWA.city.name = “Santiago”;
FIND ANY city USING name;
// sets also current of city indicator
while DBSTATUS=0 do begin

GET city // fetches data record into UWA.city
if UWA.city.population > 1.000.000 then writeln (UWA.city.name|UWA.city.population);
FIND DUPLICATE city USING name;

end;

• How to print out the city name and the country where it is located?
Needs the “owner” of the city wrt. “has_cities”.

31

Search for a Record in a Set Type

• FIND (FIRST | NEXT | PRIOR | LAST) WITHIN <set type> [USING <UWA.field.list>]

• FIND OWNER WITHIN <set type>

• starts always from the current of this set (which is implicitly set when the CRU points to a
suitable record type)

UWA.country.name = “Belgium”;
FIND ANY country USING name;
FIND FIRST city WITHIN has_capital
GET city // fetches data record (Brussels) into UWA.city
writeln (UWA.city.name);
FIND OWNER WITHIN in_province
GET province // fetches data record (Brabant) into UWA.province
writeln (UWA.province.name);

• Joins are only possible via navigation and loops in the host language.

Exercise 2.2
Write a program that outputs all organizations that have their headquarter in the capital of one
of their member countries. Compare with the equivalent SQL query against Mondial. ✷

32

UPDATES

Updates on Data Records

STORE, ERASE, MODIFY (of the current data record)

Updates on Sets

CONNECT, DISCONNECT, RECONNECT (for the current data record wrt. a set)

HIERARCHICAL DATA MODEL

• In general very similar: parent-child-relationships define a tree structure; additionally,
“virtual” parent-child-relationships.

• Systems: IMS (IBM & Rockwell International, 1969 for NASA Apollo), Adabas (Software
AG, 1969), etc ...

33

SOLUTION

// not tested
find any organization // sets current of has_headq, current of has_members
while ok do
{ get organization // current organization into UWA

find first headq_in within has_headq_in // auxiliary record hq(org,cty)
find owner within is_headq_of // is a city
find owner within has_capital // is a country
if ok then // city is a capital
{ get country // UWA.country now holds this country

found = 0;
find first membership within has_members

// starts from the organization
// points to an auxiliary membership record m(org,c)

while ok & not found do
{ find owner within is_member using code // UWA.country.code

// check if the owner country is the same as in UWA
if ok then { println(UWA.organization.name); found = 1;}
find next membership within has_members

}
}
find duplicate organization // next organization

}

34

THE SAME IN SQL

SELECT name
FROM organization org
WHERE (city,country) IN (SELECT capital, code

FROM country
WHERE code IN (SELECT country

FROM is_member
WHERE organization = org.abbreviation))

SELECT organization.name
FROM organization, is_member, country
WHERE organization.abbreviation = is_member.organization

AND is_member.country = country.code
AND organization.city = country.capital
AND organization.country = country.code

SELECT organization.name
FROM organization, country
WHERE organization.city = country.capital

AND organization.country = country.code
AND (abbreviation, code) IN (SELECT organization, country

FROM is_member)

35

CONCLUSION

• importance decreased rapidly since SQL came up (1979), in the meantime it is only
present in “legacy systems”.

• no underlying theory (required as a base for normalization and optimization)

• only procedural, (data-model-level) navigation- and record-oriented query language,
non-declarative, needs to be embedded into a host language (COBOL, PL/I, Pascal, C).

• not possible to state ad-hoc queries.
Error-prone due to behavior of currency indicators.

• nevertheless, the idea of navigation and parent-child-relationships between data records
is elegant (no problems with referential integrity).
These concepts came up again in later approaches ... with high-level navigation!

• graph data model, “node + edge-labeled”

• expecially, ordered “child data records” are used again in XML. Then, there is

– the DOM as an abstract datatype (stepwise, record-oriented),

– XPath/XQuery as a declarative, set-oriented high-level language.

36

2.2 Object-Oriented Databases

Mid-80s: Object-orientation

• object-oriented design and modeling (UML)

• object-oriented programming (C++)

Application programs are developed and programmed in an object-oriented way.

• “impedance mismatch” between tuple-based SQL databases and the object-oriented data
structures of the programming languages.

Goals:

• make objects of the application programs persistent

• bring object-orientation into the DBMS

– class hierarchy and inheritance, polymorphism

– implementation and encapsulation of behavior

37

FURTHER INFLUENCES

• Networks: Internet and Intranets

• Interoperability and data exchange

• CORBA (1989) “Common Object Request Broker Architecture” (standardized by OMG –
Object Management Group; predecessor of Web Services):

– central ORB bus where services can connect

– service registry (predecessor of WSDL and UDDI ideas)

– description of service interfaces in object-oriented style
(IDL - interface description language, similar to C++ declarations)

– exchanging objects between services

⇒ requires a format for exchanging data:
Object interchange format - OIF (a predecessor of XML and of JSON (2006: RFC 4627;
ECMA standard since 2013))

In this lecture, OODBS are only discussed shortly to sketch the central ideas.
An extended lecture can be found in “Information Systems”, available at
http://user.informatik.uni-goettingen.de/~may/Lectures.

38

LIFETIME OF OBJECTS

• Object-oriented programming language: Objects are created during runtime of an
application program, and they are destroyed when the program terminates.

Objects in OO Database Systems

• persistent: objects that are created by an activity, and then they are stored in the
database system and survive also the termination of the activity that created it (until they
are explicitly destroyed by another activity)

• transient: objects that are only needed temporarily for executing an activity. They exist
only as long as the application is actually active, and they are only managed by the
runtime environment of the programming language.

39

Lifetime of Objects

• Relational DBMS: all SQL types have only persistent instances that are stored in the
DBMS. All non-SQL types (i.e., types of the host language) have only transient instances,
these are destroyed with the termination of the application-program (= when the host
language is left).

Persistent objects can only be manipulated/used by SQL, while transient objects can only
be manipulated/used by the host language.

⇒ “impedance mismatch”.

• ODBMS: object types of the DBMS and of the application coincide. They can have
persistent and transient instances at the same time.

For persistent and transient objects the same programming language and the same
operations are used.

• comparison with XML: XML nodes can also be processed uniformly in the runtime
environment and stored in a database. The DOM-API can be used in both cases.

40

OBJECT-ORIENTED DATA MODEL

• from the point of view as a data model, only the (database) state (attributes, relationships,
class membership and class hierarchy) are relevant, not the behavior;

• representation of the current state of the application-domain,

• corresponding conceptual modeling language: UML (see Software Engineering)

• more expressive than the relational model/ER-model

• (behavior of objects is integrated into the data manipulation language)

41

OO-DBMS

Standardization activities similar to the standardization of relational databases:

Success of the relational database systems:

• not only by the simple, high-level data model,

• but also due to the standardization: SQL (at least after some time)

– portability

– interoperability

ODMG: Object Database Management Group

• founded 1991

• Architecture of OODBMS, DDL, query language (OQL), data formats

• ODMG-1.0 standard (1993)

• ODMG-2.0 standard (1997)

• ODMG-3.0 standard (2000); incremental changes

Literature: Cattell et al; Object Database Management (ODMG, 1993/1997/2001)

42

ODMG: OBJECT DATABASE MANAGEMENT GROUP

• Voting members: organizations/companies, who commercially work at an ODBMS,
among others JavaSoft, Windward Solutions, Lucent Technologies, Unidata, GemStone,
ObjectDesign, Versant, ...
Reviewer members: Organizations who have a material interest in the work of ODMG.

• not the goal to define identical products, but to obtain source code portability (cf. Java,
SQL, later also XML).

• enough freedom to define own properties and targets of products:

– performance, optimization, (price)

– support of certain programming languages,

– functionality dedicated to special application areas (multimedia, CAD, ...), predefined
types

– integrated programming environments, design tools ...

43

ARCHITECTURE OF ODBMS

• Different from “classical” relational DBMS:
SQL: high-level language for data manipulation,
applications are then written in other programming languages (cf. embedded
approaches).

• ODBMS/ODM: transparent integration of DBMS functionality (persistence, multiuser,
recovery) into application programming language (cf. Persistent Java).
The objects of the application are simply stored in the database.

• no separate DML necessary. The application-level programming language is the DML.

• There is also a set-oriented, declarative query language
(the impedance mismatch between variable-orientation and set-orientation remains):
OQL

• no transformation between the (logical) database representation and the representation
in the programming language (cf. datatype conversion in JDBC).

44

ARCHITECTURES

ODMG is concerned with two types of products:

• Object Database Management Systems (ODBMSs) store the objects directly,

• Object-to-Database Mappings (ODMs) convert objects and store them in a relational (or
any other) representation.

(object-oriented)
data structures
of the application

relational
representation

Remark:
There are similar ap-
proaches for XML
databases.

Transformation

RDBMS

transparent
ODBMS-
data transfer

45

ODMG-STANDARD

A standard that consists of several languages for implementation-level specification of
object-oriented systems.

COMPONENTS OF THE ODMG STANDARD

• Object specification languages/data model

– Object Definition Language (ODL)

– Object Interchange Format (OIF)

• Object Query Language (OQL) – based on SQL

• C++/Smalltalk/Java Language Binding
specifies how to work with persistent objects in the target languages.

46

2.2.1 ODL: Object Definition Language

• Data definition language for object types:

• not a programming language, but only a language for definition of object specifications,

• characterizes object types (class hierarchy, properties and relationships)

• extends IDL (Interface Definition Language) from the OMG/CORBA (1989/1990) standard
(which is in course closely related to the declaration commands in Java)

47

DATA TYPES: LITERALS

Literals are only values, they have no object identity.

Atomic literals

• long, short, unsigned long/short, float, boolean, char, string,

• enumeration {...} (“type generator”)
Z.B. enum Weekday {Sunday, Monday, . . . , Saturday}

Structured Literals

• predefined types: date, interval, time, timestamp
(additionally to actual object types Date, Interval, Time, Timestamp)

• user-defined structural types, e.g. address or
struct geoCoord { real latitude;

real longitude; }

Collection literals

• set<t>, bag<t>, list<t>, array<t>, dictionary<t> – these are immutable “write once”
(additionally to the actual collection class types Set, Bag, List, Array, Dictionary whose
contents can be changed)

48

CLASSES

... are used to define and categorize complex object types.

Classes define the signature of their instances (the implementation does not belong to the
object model):

class <name> { <attribute-defs>;
<relationship-defs>;
<operation-defs>;
}

<attribute-def> ::= attribute <domain-type> <attribute-name>

class City { attribute string name; % attributes ...
attribute number population;
attribute geoCoord coordinates;
relationship Country in_country; % ... and relationships
}

49

RELATIONSHIPS

• relationships are defined in course of the definition of classes.

• in UML and ODMG, only binary relationships are allowed.

• bidirectional and inverse relationships can be specified. Inverse relationships exist in
UML, and later again in the Semantic Web languages (OWL).

• one-to-one / one-to-many / many-to-many-relationships.

class <name> {
<attribute-defs>;
<relationship-defs>;
<operation-defs>; }

<relationship-def>::= relationship <target_of_path> <relationship-name>

inverse <domain-type> :: <relationship-name’>
<target_of_path>::= <domain-type> |

<collection type> <<domain-type>>

• <collection type> for -to-many-relationships

50

RELATIONSHIPS

class <name> { <attribute-defs>;
<relationship-defs>;
<operation-defs>; }

<relationship-def>::= relationship <target_of_path> <relationship-name>

inverse <domain-type> :: <relationship-name>

<target_of_path>::= <domain-type> |
<collection type> <<domain-type>>

class Country { attribute string name;
relationship City capital inverse City::is_capital_of;
relationship set<City> has_cities inverse City::in_country; }

class City { attribute string name;}

Country

name

code

City

namecapital→ 1
←is_capital_of0,1

has_cities→ 1..*
←in_country1

51

RELATIONSHIPS

• the instance level can be represented as a graph:

– nodes: objects; nodes have labels (names of the object types) and an ID

– edges: relationships; edges have labels (names of relationships)

• ODBMS is responsible for maintaining referential integrity:
If an object is deleted, all relationships with/to it must also be deleted.

• relationships define access paths, e.g. Germany.capital for navigation through the graph.

• graph-data model, “node + edge-labeled”

• The set<...> is very similar to the set-oriented representation of set-valued relationships
from the network data model (→ handled by iterators)

• the query language OQL solves this problem SQL-like in a declarative way (see later).

Exercise 2.3
Visualize an excerpt of the Mondial database as an object graph. ✷

52

2.2.2 Object Interchange Format (OIF)

• serialize into a charecter stream for exchanging one or more objects with another
application,

• serialize fo a file: dump the database state to one or more files (cf. export in ORACLE),

• specification language for persistent objects and their states,

• OIF output contains for each object its type, its attributes and values, and its relationships
to other objects,

• the database schema (class definitions and class hierarchy) is not represented in OIF!

53

OBJECT INTERCHANGE FORMAT (OIF)

• Simplest form: only the class membership
<object> <class> {}
Germany Country {}
Berlin City {}

• attribute values are enumerated in braces:

Germany Country {name “Germany”, area 356910, . . . }

• structured attributes: nested brace structures

struct geoCoord { real latitude;
real longitude; }

class City { attribute string name;
attribute geoCoord coordinates;
relationship Country in_country; }

Berlin City {name “Berlin”, in_country Germany,
coordinates {latitude 52.45, longitude 13.3} }

54

OBJECT INTERCHANGE FORMAT (OIF)

• Collections, set-valued relationships:

class Country {
attribute string name;
relationship set<City> has_cities;}

Germany Country
{name “Germany”, capital Berlin,
has_cities {Berlin, Frankfurt, Freiburg, . . . } }

• cyclic references: no problem.

• attributed relationships (e.g. border) cannot be represented directly

⇒ OIF is already a self-describing data format!

55

2.2.3 OQL (overview)

• Query language of the ODMG standards (Object Query Language)

• similar to SQL:
SELECT - FROM - WHERE - clause, extended by complex objects, object-identity, path
expressions, polymorphism, operation calls and late binding.

• but: functional language (like SQL), fully orthogonal (in SQL not completely)

• no explicit UPDATE statement: instead, object methods are used

• not Turing complete (cf. SQL/transitive closure)

• OQL can be embedded into suitable object-oriented programming languages (C++, Java,
Smalltalk). Results of queries (collections!) are then processed by iterators.

56

EXTENTS

SQL: SELECT ... FROM <relation> ...

What corresponds to a relation in an ODBMS ?

⇒ Extension: set of all instances of a class (similar to system-owned sets in NWDBMS).

Extensions are defined in ODL together with the class declaration:

class <name> (extent <extent_name>)
{ <attribute-def>;

<relationship-def>;
<operations-def>; }

class Country (extent Countries)
{ attribute string name;

relationship City capital;
set<string> languages;
. . . }

57

QUERIES

Queries against the database are expressed with the SELECT statement, with the same
simple basic structure as in SQL:

SELECT <expression>

FROM <extents>

WHERE ...

SELECT c.population
FROM Countries c
WHERE c.name = ’Germany’

• with an iterator variable (here: c) – cf. SQL Aliasing

Similar to SQL:

• DISTINCT, aggregate functions: COUNT, SUM, . . . , set functions: UNION, INTERSECT,
EXCEPT (MINUS)

58

QUERIES

• SQL: all results of queries of the form

SELECT a,b,c FROM ...

are virtual “relations” (i.e. sets of tuples),

• OQL: the result is a virtual set of objects,

• in most cases an (implicit) collection.

SELECT c.capital
FROM Countries c

Result is of the type

collection <City>

⇒ queries can be nested arbitrarily (like in SQL)

59

QUERIES

in case that the result has more than one attribute (e.g. with SELECT *), a

bag <struct{...}>

is automatically generated:

SELECT c.name, c.population
FROM Countries c
WHERE c.area > 100000

Result is of the type

bag <struct {string name; number population}>

60

COMPLEX RESULTS

• bags (here: set-valued relationship) can be handled as a whole,

• by explicit generation of a struct, the properties of the result can be renamed:

SELECT struct(name: c.name,
cities: c.has_cities)

FROM Countries c

result is of the type

collection <struct {string name;
collection<City> cities}>

How can something in the collection be selected?

61

... straightforwardly: apply a SELECT statement to the collection:

SELECT struct(name: c.name,
cities: (SELECT cty

FROM c.has_cities as cty
WHERE cty.population>1000000))

FROM Countries c

• Traversing the relationship has_cities by a path expression in the query

• nested SELECT in the SELECT statement: the inner SELECT ranges over the (virtual)
set c.has_cities of instances of type set<City>.

• the inner SELECT is evaluated separately for every result (i.e. for each instance c) of the
outer SELECT.

62

PATH EXPRESSIONS

for navigation along scalar relationships:

SELECT name: c.name,
cpp: c.capital.province.population

FROM Countries c

63

SELECT IN THE FROM-CLAUSE

Navigation along set-valued relationships:

not allowed:
SELECT name: c.has_cities.name,

pop: c.has_cities.population
FROM Countries c
WHERE c.name = “Germany”

has_cities is a set of cities, thus, the method population cannot be applied (to the set).

This can be done e.g. by a SELECT statement in the FROM-clause:

SELECT name: cty.name,
pop: cty.population

FROM (SELECT c.has_cities
FROM Countries c
WHERE c.name = “Germany”) as cty

64

CORRELATED JOINS

... do the above example even better:

SELECT name: cty.name,
pop: cty.population

FROM Countries c, c.has_cities cty
WHERE c.name = “Germany”

This would be a nice feature also in SQL ... the right side of the join is computed dependent
on the left one.

⇒ asymmetric joins that express nested iteration in a declarative way

⇒ not aligned with the relational algebra

65

OQL: FUNCTIONAL LANGUAGE CONCEPT

SQL:

• declarative, relational algebra as theoretical base,

• somewhat ad-hoc language (around SELECT – FROM – WHERE),

• not completely orthogonal composition (aggregate functions, method applications)

OQL:

• orthogonal composition rules: operators can be nested as long as the type system is not
violated

• functional concept, includes the simple queries in SQL syntax.

• result of a query is always a

collection()

• can be processed in the same way as an extension (intensional part of the database).

66

CONCLUSION

• Object-oriented databases have not been accepted by the market.

• Products: ObjectStore, Adabas, O2, GemStone, Poet, ...
Some of them served as the base for the first commercial XML database systems
(Excelon, Tamino [Software AG]).

• Object-relational extensions to SQL and relational systems (SQL-3-Standard):
evolutionary instead of revolutionary development.

• graph data model, “node + edge-labeled”

• set-oriented (extents similar to relations) and navigation-based access, integrated in a
declarative language.
Problems with navigating along set-valued properties.

• OQL as a functional language with fully orthogonal constructs and the possibility to
generate structures in the SELECT-clause.
The XML-Query language XQuery will be very similar ...

• OIF as self-describing character-based data exchange format (usually, ISO 8859-1,
Latin), but still with a fixed schema.

67

2.2.4 Analysis: 1:n-Relationships

Country

name
code

City

namecapital→ 1
←is_capital_of0,1

has_cities→ 1..*
←in_country1

class Country { attribute string name;
relationship City capital inverse City::is_capital_of;
relationship set<City> has_cities inverse City::in_country; }

class City { attribute string name;}

• correct: germany.capital.name

• not correct: germany.has_cities.name

• translation to set<City> “country is in relation with a set of cities” is a tribute to
programming language influence: must be something that exists in programming
languages and that can be bound to a single variable.
“set-valued” – one answer which is a set.

• applying “.name” to a set is obviously not correct.

68

ALTERNATIVE TRANSLATION

Country

name
code

City

namecapital→ 1
←is_capital_of0,1

has_cities→ 1..*
←in_country1

• database style: “country is in relation with multiple cities”
“multi-valued” – a set of answers, each of them is a city,

• “set of answers” is a meta-concept of the query language, not of the underlying
programming language,

• applying “.name” to a set of answers can be defined by the semantics of the query
language!

• “Modern” query languages change to multivalued semantics:

– F-Logic (1989, see later): germany.has_cities.name,

– XPath (for XML, 1998): //country[name=“Germany”]/province/city/name,

– semantics of path expressions stays within the semantics of the query language.

69

2.3 Data Integration and Metadata Queries: SchemaSQL

2.3.1 Introduction

• So far: single databases

• according to the classical 3-level architecture

external

Level
View 1 View 2 View n

logical

Level
conceptual/logical schema

physical

Level
physical schema

DB state
...

... Mappings

Mapping

70

MULTIDATABASE SYSTEMS AND FEDERATED DATABASE SYSTEMS

• providing a common, integrated view over several databases

External Level View1 View2 · · · Viewm

Integrated Level integrated logical schema

Logical Level log. schema1 log. schema2 · · · log. scheman

Physical Level phys. schema1 phys. schema2 · · · phys. scheman

DB State · · ·

...

Integration Mappings

71

DATA INTEGRATION AND METADATA QUERIES IN SQL: SCHEMASQL

SchemaSQL (Lakshmanan et al. 1996; non-commercial academic system) extends SQL:

• combination of relations and attributes of different (federated) databases.

• uniform handling of data and metadata (by SchemaSQL variables).

• possible domains of variables are the names of the components of a federation, names of
the relations of a database, names of the attributes of a relation, tuples of a relation, and
values of a column of a relation.

• additionally to the “vertical” aggregations over columns, also “horizontal” aggregations
over relations or even tables are possible.

72

Example

univ-A

salInfo

category dept salary

Prof CS 65,000

Assoc Prof CS 50,000

Prof Math 60,000

Assoc Prof Math 55,000

univ-C

CS

category salary

Prof 60,000

Assoc Prof 55,000

Math

category salary

Prof 70,000

Assoc Prof 60,000

univ-B

salInfo

category CS Math

Prof 55,000 65,000

Assoc Prof 50,000 55,000

univ-D

salInfo

dept Prof Assoc Prof

CS 75,000 60,000

Math 60,000 45,000

73

2.3.2 Declaration of Variables

... as known from SQL in the FROM-clause: FROM <range> <var>

SQL: FROM <table> <var>

SELECT cty.name, cty.population

FROM City cty

< range > ∈ {→, db→, db :: rel, db :: rel→, db :: rel.attr} .

• → : names of the databases of the federation

• db→ : names of the relations of the database db.

• db :: rel : tuples of the relation rel of the database db [as in SQL].

• db :: rel→ : names of the attributes of the schema of the relation rel of the database db.

• db :: rel.attr : values of the column of the attribute attr of the relation rel of the database
db.

• SchemaSQL: iterated declarations of variables are allowed!
⇒ joins not longer symmetrical (cf. OQL).

74

Declaration of Variables: Tuple- and Domain Variables

• tuple variables as known from SQL:
db :: rel ranges over the set of tuples of the relation rel of the database db.

SELECT tuple.category, tuple.salary
FROM univ-C::CS tuple

category salary

“Prof” 60000

“AssocProf” 55000

• Domain-Variables:
db :: rel.attr ranges over the set of values of the attribute attr of the relation rel of the
database db

SELECT cat
FROM univ-A::salInfo.category cat

cat

“Prof”

“AssocProf”

Note: SQL-style SELECT category FROM univ-A::salInfo

yields the same result – but does not allow to bind the values

to a variable (that can be used somewhere else)

75

Declaration of Variables: Metadata Variables

• db→ ranges over the relation names of the database db.

SELECT relname FROM univ-C→ relname

relname

“CS”

“math”

• Nested declarations: Second variable depends on the first one:

SELECT dept, tuple.category, tuple.salary
FROM univ-C→ dept, univ-C::dept tuple

dept category salary

“CS” “Prof” 60000

“CS” “AssocProf” 55000

“Math” “Prof” 70000

“Math” “AssocProf” 60000

... integrates both tables from univ-C in one.

76

Declaration of Variables

• Variables over names of attributes:
db :: rel→ ranges over the set of attribute names of the schema of the relation rel of the
database db.

SELECT attrname

FROM univ-C::CS→ attrname attrname

“category”

“Salary”

• SELECT C: name of the attribute,
SELECT T.C: value of the respective attribute of the current tuple.

SELECT attrname, univ-C::CS.attrname

FROM univ-C::CS→ attrname “category” “Prof”

“category” “AssocProf”

“Salary” 60000

“Salary” 55000

77

Declaration of Variables

• → ranges over the names of the databases of the federation.

SELECT dbname FROM→ dbname
dbname

“univ-a”

“univ-b”

“univ-c”

“univ-d”

• SELECT dbname, relname

FROM→ dbname, dbname→ relname dbname relname

“univ-A” “SalInfo”

“univ-B” “SalInfo”

“univ-C” “CS”

“univ-C” “math”

“univ-D” “SalInfo”

78

2.3.3 Queries

All departments of Univ-A that pay a higher salary to their professors than the corresponding
departments of Univ-B:

select A.dept
– all variables are independent

from univ-A::salInfo A, univ-B::salInfo B,
univ-B::SalInfo-> AttB

where AttB <> “category” and
A.dept = AttB and
A.category = “Prof” and
B.category = “Prof” and
A.salary > B.AttB.

79

Queries (Cont’d)

Same for C/D:

select RelC
– C depends on RelC

from univ-C-> RelC, univ-C::RelC C,
univ-D::salInfo D

where RelC = D.dept and
C.category = “Prof” and
C.salary > D.Prof

80

AGGREGATION

Similar to SQL, there can be aggregation over a variable.

⇒ here also horizontal and blockwise aggregation possible.

Average salary for each kind of professors over all departments of Univ-B:

select T.category, avg(T.D)
from univ-B::salInfo→D, univ-B::salInfo T
where D <> “category”
group by T.category

• select the values for D,

• compute the cartesian product
with univ-B::salInfo T

• include column T.D

• evaluate, do the grouping, com-
pute the aggregate

D category CS Math T.D

category Prof 55,000 65,000 55,000

CS Prof 55,000 65,000 55,000

math Prof 55,000 65,000 65,000

category Assoc Prof 50,000 55,000 50,000

CS Assoc Prof 50,000 55,000 50,000

math Assoc Prof 50,000 55,000 55,000

81

Aggregation

Average salary for each kind of professors over all departments of Univ-C:

select T.category, avg(T.salary)
from univ-C→D, univ-C::D T
group by T.category

• compute values for D,

• join with tuple variable D T

D category salary

CS Prof 60,000

CS Assoc Prof 55,000

math Prof 70,000

math Assoc Prof 60,000

• grouping

• compute the aggregate

82

RESTRUCTURING

... as usual via views:

create view
BtoA::salInfo(category, dept, salary) as

select T.category, D, T.D
from univ-B::salInfo→D, univ-B::salInfo T
where D <> ‘category’

creates a virtual database BtoA with a virtual relation salInfo in the same format as A::salInfo.

83

Restructuring

A to B: number of attributes of the result table depends on the number of departments.
⇒ Dynamic result schema

create view AtoB::salInfo(category,D) as
select A.category, A.salary
from univ-A::salInfo A, A.dept D

Result of the FROM-clause:
A.category A.salary A.dept D

Prof 65,000 CS

Assoc Prof 50,000 CS

Prof 60,000 Math

Assoc Prof 55,000 Math

Many-to-one-mapping into a schema of the form

salInfo(category, dept1, . . . , deptn).

AtoB::salInfo

category CS Math

Prof 65,000 60,000

Assoc Prof 50,000 55,000

84

2.3.4 Exercise

Create the following view that represents the information of all four databases in a uniform
way:

create view
globalSchema::salInfo(univ, dept, category, salary) as
[TO BE COMPLETED]

85

SOLUTION

create view
globalSchema::salInfo(univ, dept, category, salary) as

select “univ-A”, T.dept, T.category, T.salary
from univ-A::salInfo T

union
select “univ-B”, D, T.category, T.D
from univ-B::salInfo T, univ-B::salInfo→D
where D<>“category”

union
select “univ-C”, T, T.category, T.salary
from univ-C→D, univ-C::D T

union
select “univ-D”, T.dept, C, T.D
from univ-D::salInfo T, univ-D::salInfo→C
where C<>“dept”

86

2.3.5 Query Evaluation

Federation System Table (FST): meta-information about the component databases, i.e.
names of the databases, relations, attributes, or other statistical information that is useful
for query evaluation (similar to the Data Dictionary in SQL).

Variable Instantiation Tables (VIT): contain the possible variable bindings during the
evaluation (meta level).

Input: a SchemaSQL query

Output: bindings of the variables of the SELECT-clause of the query

Evaluation: two phases:

1. generation of the VITs according to the variables in the FROM-clause. For this, SQL
queries are stated against the local databases and against the FST.

2. rewriting of the SchemaSQL query into an equivalent query using the VITs (Dynamic
SQL). This query is then evaluated by the resident SQL server.

87

EVALUATION: EXAMPLE

select RelC
from univ-C→ RelC, univ-C::RelC C, univ-D::salInfo D
where RelC = D.dept and C.category = “Prof” and C.salary > D.Prof

Bindings for meta-variables (query against an FST):
V ITRelC

RelC

CS
Math

Bindings for tuple variables (queries against component-DBS):

V ITC (depends on RelC)

RelC category salary

CS Prof 60,000
CS Assoc Prof 55,000

Math Prof 70,000
Math Assoc Prof 60,000

V ITD

Dept Prof AssocProf

CS 75,000 60,000
Math 60,000 45,000

88

Evaluation: Example

... again the query:

select RelC
from univ-C→ RelC, univ-C::RelC C,

univ-D::salInfo D
where RelC = D.dept and

C.category = “Prof” and
C.salary > D.Prof

Query evaluation via standard SQL over the V IT ′s.

select VIT_RelC.RelC
from VIT_RelC, VIT_C, VIT_D
where VIT_C.RelC = VIT_RelC.RelC % Correlation RelC, C

and VIT_RelC.RelC = VIT_D.dept
and VIT_C.category = “Prof”
and VIT_C.salary > VIT_D.Prof

89

EXERCISE: SCHEMA-SQL

Describe the evaluation of the query given on Slide 76 with its FST and VITs.

Solution

V ITdbname

dbname

univ-A

univ-B

univ-C

univ-D

V ITrelname

dname relname

univ-A salInfo

univ-B salInfo

univ-C CS

univ-C math

univ-D salInfo

SELECT V ITdbname.dbname, V ITrelname.relname
FROM V ITdbname, V ITrelname

WHERE V ITdbname.dbname = V ITrelname.relname

90

2.3.6 Example: Integration of Stock Exchange Data

Frankfurt::Quota

Date Name Price

3.3.93 sun 150

3.3.93 dc 151

3.3.93 b.u. 160

4.3.93 sun 153

4.3.93 dc 154

4.3.93 b.u. 163

Tokyo::Quota

Date sun dc fuji

3.3.93 150 151 140

4.3.93 153 154 140

Sydney::3.3.

Name Price

sun 150

dc 151

kiwi 130

Sydney::4.3.

Name Price

sun 153

dc 154

kiwi 135

New York::sun

Date Price

3.3.93 150

4.3.93 153

New York::dc

Date Price

3.3.93 151

4.3.93 154

New York::msoft

Date Price

3.3.93 148

4.3.93 74

Possible extension:

Euro vs. Dollar vs. Yen

91

EXERCISE: SCHEMA-SQL

• Formulate the “On which days had which stocks the price of 150 $?” for the schemata
given on Slide 91.

• In commercial database systems, the schema information is stored in the Data Dictionary
(cf. the following excerpts of table definitions of the data dictionary):

SQL> desc sys.user_tables;
Name Null? Type
----------------------- -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)

SQL> desc sys.user_tab_columns;
Name Null? Type
----------------------- -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
DATA_TYPE VARCHAR2(30)

Describe how the above queries can be formulated in an environment where SQL is
embedded into a procedural programming language (e.g. embedded-SQL or PL/SQL)
(Pseudocode).

92

SOLUTION: SCHEMA-SQL

• SELECT Date, Name
FROM Frankfurt::Quota
WHERE Price=150;

SELECT Date, AttrName
FROM Tokyo::Quota.Date, Tokyo::Quota → AttrName
WHERE AttrName 6= ’Date’ AND Price=150;

SELECT NewYork::TabName.Date, TabName
FROM NewYork → TabName
WHERE Price=150;

SELECT TabName, Sydney::TabName.Name
FROM Sydney → TabName
WHERE Price=150;

• Information from the Data Dictionary is only needed for Tokyo, New York and Sydney.

93

SOLUTION: SQL

Algorithm for SQL in a procedural environment (database Tokyo):

• Store the result of

SELECT ColumnName
FROM Tokyo.user_tab_columns
WHERE ColumnName 6= ’Date’;

(result: the names of the companies) and for each result <cn> execute the query

SELECT Date, <cn>

FROM Tokyo.Quota
WHERE <cn>= 150;

and collect all results.

94

Solution: SQL

• database “New York”: store the result of

SELECT TableName
FROM user_tables
WHERE

(SELECT ColumnName
FROM user_tab_columns UTC
WHERE UTC.TableName=TableName = {Date,Price});

(the comparison of sets must be formulated in SQL) and for each result <tn> evaluate the
query

SELECT Date, <tn>

FROM <tn>

WHERE Price = 150;

and collect all results.

Problem: SQL statements must be generated dynamically : the results of the first query are
used in the second statement.

95

SOLUTION: DYNAMIC SQL

This is e.g. possible in Oracle by using the DBMS_SQL-Package (to be used with PL/SQL),
which allows to generate SQL statements at runtime:

create procedure findnumber as
declare
cursor col_cursor is

select column_name, data_type
from sys.user_tab_columns
where table_name = upper('&&table_name')
order by column_id;

lv_column_name sys.user_tab_columns.column_name%TYPE;
lv_column_typ sys.user_tab_columns.data_type%TYPE;
lv_rowid varchar2(20);
rows_processed number;
loop_count number;
stmnt varchar2(2000);
doublecur BINARY_INTEGER;
execute_feedback INTEGER;
type colname_typ is table of lv_column_name%TYPE

index by binary_integer;
type rowid_typ is table of lv_rowid%TYPE

96

index by binary_integer;
colname_table colname_typ;
empty_colname colname_typ;
rowid_table rowid_typ;
empty_rowid_table rowid_typ;

begin
DBMS_OUTPUT.ENABLE(10000);
rows_processed := 0;
-- Search for attributes with datatype "Number"
open col_cursor;
loop

fetch col_cursor into
lv_column_name, lv_column_typ;

exit when col_cursor%notfound;
IF lv_column_typ='NUMBER' THEN

rows_processed := rows_processed+1;
colname_table (rows_processed)

:= lv_column_name;
END IF;

end loop;
close col_cursor;

-- Initialize query statement
stmnt := 'select rowid from '

|| '&&table_name '

97

|| 'where ';

-- generate the query iteratively
loop_count := 1;
WHILE loop_count <= rows_processed
loop

stmnt := stmnt
|| colname_table(loop_count)
|| ' = &&Price';

if loop_count < rows_processed
then

stmnt := stmnt || ' or ';
end if;
loop_count := loop_count + 1;

end loop;
DBMS_OUTPUT.PUT_LINE

('Computed Query: ' || stmnt);

-- execute the generated statement
doublecur := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE (doublecur

,stmnt
,DBMS_SQL.V7);

DBMS_SQL.DEFINE_COLUMN
(doublecur, 1, lv_rowid, 20);

execute_feedback := DBMS_SQL.EXECUTE (doublecur);

98

-- generate list of all resulting data records and
-- RowIDs
loop

if DBMS_SQL.FETCH_ROWS (doublecur) = 0
then

exit;
else

DBMS_SQL.COLUMN_VALUE (doublecur,1, lv_rowid);
DBMS_OUTPUT.PUT_LINE('RowID: ' ||lv_rowid);

end if;
end loop;

-- cleaning ...
DBMS_SQL.CLOSE_CURSOR (doublecur);
colname_table := empty_colname;

end;
/

99

Solution: Dynamic SQL

SQL> execute find-number;
Give value for table_name: Tokyo
Give a value for price: 150
Generated Query:

select rowid from Tokyo
where SUN = 150 or DC = 150 or FUJI = 150

RowID: AAAA2MAADAAAD7nAAA

SQL> select * from Tokyo
where rowid='AAAA2MAADAAAD7nAAA';

03.03.93 150 151 140

which must still be postprocessed for obtaining the answer ’sun’, 3.3.93.

• Conclusion: SchemaSQL helps to express such queries much shorter and more concise,
and it is easier to learn than PL/SQL and DBMS_SQL.

100

2.3.7 Exercise: Horizontal and blockwise Grouping

• Consider the schemata univ-B, univ-C and univ-D. Give SchemaSQL queries that
return for each kind of professors the average salary over all departments.

101

SOLUTION: HORIZONTAL AND BLOCKWISE GROUPING

• univ-A: same as in standard SQL: vertical aggregation:

select T.category, avg(T.salary)
from univ-A::salInfo T – tuple variable
group by T.category

• univ-B: horizontal aggregation
see Slide 81.

• univ-C: aggregation over different tables
see Slide 82.

• univ-D: aggregation over different columns:

select T.category, avg(T.C)
from univ-B::salInfo T, univ-B::salInfo → C
where C <> “dept”
group by C

102

CONCLUSION

• integration of relational databases with different schemas

• queries against metadata

• combination of metadata and data

• data-dependent generation of schema

New Features
Generalization of the use of variables:

• SQL: variables only ranging over tuples of a fixed relation,

• SchemaSQL: variables ranging over “everything”: data: tuples, column values
metadata: names of columns, names of relations, even names of databases,

• intuitively simple extension of SQL,

• powerful feature for data integration,

– But: classical query optimization/evaluation not applicable.

Such variables are more (F-Logic) or less extremely (XML: XPath/XQuery) used in
Semistructured Data and XML.

103

