Semistructured Data and XML 7

3. Unit: XQuery & Mondial

Information about the XML course, recommended tools as well as the Mondial Database, is found under
http://www.stud.informatik.uni-goettingen.de/xml-lecture

The following exercises use the Mondial database and should be solved using
the XQuery web interface of the eXist XML database system® and/or using
the saxon XQuery engine.

Remember to set the collection context in the web interface to *’/db/xmlcourse’.

Exercise 3.1 Give name and population of the country with the highest population.

for $ctr in /mondial/country

where ($ctr/population = max(/mondial/country/population))
return

<result>

{$ctr/name}

{$ctr/population}

</result>

(: the where-clause can also be moved into the XPath part,
although it is harder to understand then :)

for $ctr in /mondial/country[population = max(/mondial/country/population)]
return

<result>

{$ctr/name}

{$ctr/population}

</result>

(: or, because it is only one country, also a ’let’ can be used: :)

let $ctr := /mondial/country[population = max(/mondial/country/population)]
return

<result>

{$ctr/name}

{$ctr/population}

</result>

(: Ergebnis: China 1210004956 :)

Exercise 3.2 For each organization, return its name and the sum of the population of its members
(in descending order, ignore different member types).

for $org in /mondial//organization
let $sum := sum($org/members/id(@country) /population)
order by $sum descending

Semistructured Data and XML 8

return
<result>
<org>{$org/name}</org>
<pop>{$sum}</pop>
</result>
(: a typical for-let-combination :)
(: 168 hits (including organizations where no member are stored, otherwise 152) :)
(: first result: International Olympic Committee, pop = 5741497820 :)

Exercise 3.3 Imagine the moment of sunrise in Dakar on 21th of September. Which is the city
where the sun rises next?

let $cities :=
for $c in /mondial//city
where (number ($c/longitude) < number (/mondial//city[name = ’Dakar’]/longitude))
return $c

for $city in $cities

where $city/longitude = max($cities/longitude)

return $city

(: another nice example for preparing using a ’let’ :)
(: Ergebnis: Hafnarfjoerdur,IS,Iceland,12000,-22,64 :)

Exercise 3.4 Which lakes, seas and rivers does Russia share with ezactly one other country?

for $water in /mondial//(lake|river|sea)

where $water/located/id(@country)/name="Russia"
and count($water/located/id(@country)) = 2

order by $water/name

return
element {$water/name()} {$water/name/text()}
(: result: 9 items: Argun,Dnepr,Irtysch,Ischim, ... :)
(: ...Dzero Chanka,Sea of Azov,Sea of Japan,Tobol,Ural :)

(: note the explicit result element constructor :)

Exercise 3.5 The database contains redundant information about the population of countries (in
country and in province). Compute all inconsistent countries, i.e., those whose population differs
more than 10% from the sum of the population of their provinces.

for $con in /mondial/continent
let $area := sum (

for $c in /mondial/country[id(encompassed/@continent)=%$con]

return (($c/@area) * ($c/encompassed[@continent=$con/@id]/@percentage) div 100))
where $area > $con/area/text() * 1.1

or $area < $con/area/text() * 0.9
return <continent>

{$con/name}

Semistructured Data and XML 9

{$con/area}
{$area}
</continent>
(: yes: Australia :)
(: note that the ’where’ is evaluated after the ’let’ (and uses the
let’s variable)! :)

Exercise 3.6 Compute all pairs of european countries that are adjacent to the same set of seas.

(: mondial.xml hat leider keine vollstaendige Meeresdaten (z.B. fuer Albanien) :)

let $europcountries := /mondial/country[encompassed/@continent="europe'"]
for $cl in $europcountries
let $seasl := /mondial/seallocated/@country = $cl/@car_code]/name

for $c2 in $europcountries
let $seas2 := /mondial/sea[located/@country = $c2/@car_code]/name
where $cl/name/text() < $c2/name/text()
and exists($seasl)
and deep-equal($seasl,$seas2)
return <result>{$cl/name} {$c2/name} {$seas1}</result>

(: it is also possible to compare the sets item-by-item instead of
using deep-equal (which deep-compares the complete XML sequences
bound to the variables)

Note the implicit set-based comparisons in the ’every’ parts
with $seasl and $seas?2 :)

let $europcountries := /mondial/country[encompassed/@continent="europe"]
for $cl in $europcountries
let $seasl := /mondial/seallocated/@country
for $c2 in $europcountries
let $seas2 := /mondial/seal[located/@country
where $cl/name/text() < $c2/name/text()
and (every $s1 in $seasl satisfies $sl1 = $seas?2)
and (every $s2 in $seas2 satisfies $s2 = $seasl)
return <result>{$cl/name} {$c2/name} {$seasl}
</result>

I

$c1/@car_code]/name

$c2/@car_code] /name

(: result: 598 pairs or 3 non landlocked pairs :)

Exercise 3.7 How many countries and how much area are encompassed by the islands in the
Caribbean Sea?

let $countries := /mondial/seal[name="Caribbean Sea"]/located/id(@country)
return
<result>

{$countries/name}

<area> {sum($countries/Qarea)’} </area>
</result>

Semistructured Data and XML 10

(: result: 7 countries, 4375760 gkm (again, incomplete data mondial.xml) :)

Exercise 3.8 For all countries, give the sum of the population of all its neighbors.

for $c in /mondial/country
let $sum := sum($c/border/id(@country) /population)

return
<result>
{$c/name}
<neighbor_pop>{$sum}</neighbor_pop>
</result>
(: Ergebnis: es sollten alle 260 Laender sein :)
(: Albanien 23257187 :)
(: Andorra 97498564 :)
(: Austria 175884037 :)
(: note that for islands (which do not have neighbors), a 20’ is explicitly

returned which is different from join-based SQL solutions where an
outer join must explicitly be forced :)

Exercise 3.9 For each country with at least 3 cities, compute the sum of the inhabitants of the
three biggest cities.

for $country in /mondial//countryl[count(.//city) > 2]
let $cities_pops :=
(for $c in $country//city[population]
let $pnum := number($c/population[1])
order by $pnum descending
return $c/population[1]
)
return
<result>
{$country/name}
<three-cities>
{sum($cities_pops[position()<=3])}
</three-cities>
</result>

(: - note that the intermediate result $cities_pops is an ordered
sequence of nodes
- take only cities that have a population entry :)
(: Result: 82 items, Albania, 314000 :)

(: In XML it is also possible to return the names of the largest three
cities, and the sum of their population: :)
(: xs:int used since fn:number does not work :)

declare namespace xhtml = "bla";
for $country in /mondial//countryl[count(.//city) > 2]

Semistructured Data and XML 11

let $cities :=
(for $c in $country//city[population]
order by xs:int($c/population[1]) descending
return $c
)
return
<result>
{$country/name}
<three-cities>
{$cities[position()=1]/name}
{$cities[position()=2]/name}
{$cities[position()=3]/name}
<sum>{sum($cities[position()<=3]/population)}</sum>
</three-cities>
</result>

Exercise 3.10 Compute all cities that have more inhabitants that the average of all cities in that
country.

for $country in /mondial/countryl[.//city/population]

let $cities := $country//city[population]

let $pops := $cities/population[1]

let $avg_pop := sum($pops) div count($cities)

let $bigcities := $country//city[number(./population[1]) >= number ($avg_pop)]

return

<result>
<country>{$country/name/text () }</country>
<cities>{$bigcities/name}</cities>
<average>{$avg_pop}</average>

</result>

(: result: 565 items :)

