Semistructured Data and XML 5

2. Unit: Querying with XPath

Information about the XML course can be found at
http://www.stud.informatik.uni-goettingen.de/xml-lecture.
These exercises are supposed to be solved using XPath, not with XQuery

Exercise 2.1 (XPath: Mondial)

a) Find out which countries are neighbors of Russia and have more than 10 million inhabitants.

(: country -> check if it is a neighbor of Russia

(using a subquery in a condition) -> name :)
//country
[border/id(@country) /name=’Russia’ and .//population > 10000000]
/population

(: Russia -> neighbors -> names :)
//country[name=’Russia’]/border/id (@country) [population>10000000] /name

b) Which countries are members of the NATO? Return the countries’ names.

(: NATO -> members -> name :)
//organization[abbrev="NAT0"]/members/id (@country) /name/text ()

(: country -> check NATO membership in subquery -> name :)
//country[id (@memberships)/abbrev=>NAT0’]/name/text ()

¢) Give the names of countries with a neighbor country with a mountain of 4000 m and higher.

//mountain[height>=4000]/located/id (@country)/border/id(@country) /name

Exercise 2.2 (XPath: Hamlet)

a) List all scenes with less than 10 persons speaking by their titles (duplicates allowed).

(: note that it counts the SPEAKER nodes in the scene, not the

different speakers! :)
//SCENE [count (.//SPEAKER)<10] /TITLE

b) What is the title of the third scene of the act with a scene called *"The Queen’s closet’?

(: Interessant, weil wegen Sonderzeichen
//ACT[SCENE[contains(TITLE, "The Queen’s closet")]]/SCENE[3]/TITLE
(: or :)
//SCENE[contains(TITLE,"The Queen’s closet")]/parent::ACT/SCENE[3]/TITLE

¢) Who are the persons speaking in both the first and the last act?

#interessanter waere nur im letzten nicht im ersten, aber not laeuft nicht)
//ACT [position()=last()]//SPEECH[SPEAKER=//ACT[1]//SPEAKER] /SPEAKER

d) What happens (stage directive) directly before King Claudius says: "Part them; they are
incensed."?

(: note: preceding-sibling is a backward axis! :)
//SPEECH[SPEAKER="KING CLAUDIUS"and LINE="Part them; they are incensed."]
//preceding-sibling: :STAGEDIR[1]

Semistructured Data and XML 6

Exercise 2.3 (XPath: Mondial (2))

a) Which (country) capitals are located at a river, sea or lake? Give their names.

//country/id(@capital) [located_at/@watertypel]/name

b) What are the names of those cities located next to a lake?

//country/id(@capital) [located_at/Qwatertype="1lake"]/name

c¢) What are the names of all lakes with no city located next to it?

//lake[not (@id = //city/located_at/@lake)]

d) What are the names of all rivers flowing through (at least) one capital?

//country/id(@capital) /located_at/id(@river) /name

e) Find all “german leaf-nodes”, which means all element nodes that are sub-nodes of the country-
element of Germany and have no children.

//country[name="Germany"]//*[count(./*) = 0]

f) In Mondial, there exist city elements as sub-elements of province elements, and city elements
as sub-elements of country elements. Are there any other city elements?

(: liefert nur country- und province-Elemente. :)
/mondial//*[(./city)]/name()

Exercise 2.4 (XML — RDB) A possible model for storing (or indexing) XML data is based
on relational tables (we ignore namespaces here).
(1) a table for storing element and text nodes:

e first column: node identifier in Dewey Notation (e.g., 1.2.6.3 for the third child of the sixth
child of the second child of the root node),

e second column: element type (or "text"),
e third column: text content (or NULL),
e forth column: number of the node when enumerated in preorder,
e fifth column: number of the node when enumerated in postorder.
(2) a table for storing attribute nodes:
o first column: dewey identifier of the node where the attribute belongs to,
e second column: attribute name,
e third column: value.
a) Discuss whether the above information is sufficient for storing an XML document. Give the
tables for a small example document.
b) Discuss what must be done when an update (modification, insertion, deletion) is executed.

c) Given a “current” element somewhere in the tree, characterize the following sets of nodes (i.e.,
the nodes that result from navigating along the different axes) by their dewey notation and, if
possible, by their preorder/postorder information:

e the parent
e all children

Semistructured Data and XML

e all descendants

e all ancestors

e all siblings

e all predecessors according to document order
e all successors according to document order

o all attributes

Consider the following XML tree (also available on the Web page):

<mondial>
<country car_code="F" area="547030" capital="cty-France-Paris">
<name>France</name>
<population>58317450</population>
<population_growth>0.34</population_growth>
<languages percentage="100">French</languages>
<province capital="cty-France-Strasbourg">
<name>Alsace</name>
<city id="cty-France-Strasbourg">
<name>Strasbourg</name>
<population year="90">252338</population>
</city>
<city>
<name>Mulhouse</name>
<population year="90">108357</population>
</city>
</province>
<province capital="cty-France-Paris'">
<name>Ile de France</name>
<city id="cty-France-Paris">
<name>Paris</name>
<population year="90">2152423</population>
</city>

</province>

</country>
<country car_code="D" area="356910" capital="cty-Germany-Berlin">
<name>Germany</name>
<population>83536115</population>
<population_growth>0.67</population_growth>
<languages percentage="100">German</languages>
<province>
<name>Baden Wurttemberg</name>
<city>
<name>Stuttgart</name>
<population year="95">588482</population>
</city>
<city>
<name>Karlsruhe</name>
<population year="95">277011</population>
</city>

Semistructured Data and XML

</province>

<province>
<name>Berlin</name>
<city id="cty-Germany-Berlin">
<name>Berlin</name>
<population year="95">3472009</population>
</city>
</province>

</country>
<country car_code="H" area="93030" capital="cty-Hungary-Budapest">...</country>

</mondial>

The resulting table is as follows:

Elements:

Dewey Nr Element typel| text contents |preorder|postorder
1 mondial 1

1.1 country 2 150
1.1.1 name 3 2
1.1.1.1 "France" 4 1
1.1.2 population 5 4
1.1.2.1 58317450 6 3
1.1.3 population_growth 7 6
1.1.3.1 0.34 8 5
1.1.4 languages 9 8
1.1.3.1 "French" 10 7
1.1.5 province 11 21
1.1.5.1 name 12 10
1.1.5.1.1 "Alsace" 13 9
1.1.5.2 city 14 15
1.1.5.2.1 name 15 12
1.1.5.2.1.1 "Strasbourg" 16 11
1.1.5.2.2 population 17 14
1.1.5.2.2.1 252338 18 13
1.1.5.3 city 19 20
1.1.5.3.1 name 20 17
1.1.5.3.1.1 "Mulhouse" 21 16
1.1.5.3.2 population 22 19
1.1.5.3.2.1 108357 23 18
1.1.6 province 24 29
1.1.6.1 name 25 23
1.1.6.1.1 "Ile de France" 26 22
1.1.6.2 city 27 28
1.1.6.2.1 name 28 25
1.1.6.2.1.1 "Paris" 29 24
1.1.6.2.2 population 30 27
1.1.6.2.2.1 2152423 31 26

Semistructured Data and XML

Note: we assume that Germany is node No 152 in preorder
enumeration.

That means, that Node no.1 is
consists of 150 nodes (including the country node for it).
Thus, in postorder enumeration, the country node for
France has number 150.

‘‘mondial’’ and France

1.2 country 1562

1.2.1 name 1563 152
1.2.1.1 "Germany" 154 151
1.2.2 population 1565 154
1.2.2.1 83536115 156 153
1.2.3 population_growth 1567 156
1.2.3.1 0.67 158 155
1.2.4 languages 159 158
1.2.4.1 "German" 160 157
1.2.5 province 161 171
1.2.5.1 name 162 160
1.2.5.1.1 "Baden Wurttemberg" 163 159
1.2.5.2 city 164 170
1.2.5.2.1 name 165 162
1.2.5.2.1.1 "Stuttgart" 166 161
1.2.5.2.2 population 167 164
1.2.5.2.2.1 588482 168 163
1.2.5.3 city 169 169
1.2.5.3.1 name 170 166
1.2.5.3.1.1 "Karlsruhe" 171 165
1.2.5.3.2 population 172 168
1.2.5.3.2.1 277011 173 167
1.2.6 province 174 ?
1.2.7 province 210
1.2.7.1 name 211
1.2.7.1.1 "Berlin" 212
1.2.7.2 city 213
1.2.7.2.1 name 214
1.2.7.2.1.1 "Berlin" 215
1.2.7.2.2 population 216
1.2.7.2.2.1 3472009 217

1.3 country 389 ?
1.3.1 name 390 389
1.2.1.1 "Hungary" 391 388
Attributes:

Parent (Dewey) AttrName Attr Value

1.1 car_code "gn

1.1 area "547030"

1.1 capital "cty-France-Paris"
1.1.4 percentage "100"

Semistructured Data and XML 10

1.1.5 capital "cty-France-Strasbourg"
1.1.5.2 id "cty-France-Strasbourg"
1.1.5.2.2 year "9o"

1.1.6 capital "cty-France-Paris"
1.1.6.2 id "cty-France-Paris"
1.1.6.2.2 year "90"

1.2 car_code "p"

1.2 area "'356910"

1.2 capital "cty-Germany-Berlin"

etc.

The information is more than sufficient: The preorder and postorder numbers are not necessary.
But they will provide useful search indexes.

Note that there is no reasonable notion for inorder traversal (this would be “leftchild-self-rightchild”
an is thus only applicable to binary trees).

Updates:

e update of text contents: only one update of the first table
e modification, insertion, or deletion of an attribute node: only one update to the second table
e insertion or deletion of an element:

— change dewey number of all following siblings

— change preorder and postorder numbers of all nodes with higher numbers

Use of the indexes:

e parent, following-sibling, preceding-sibling: by Dewey Number arithmetics (note that CREATE
TYPE DEWEY with suitable methods parent (), preceding-sibling(), following-sibling()
and an ORDER method makes this even easier [note that there cannot be a MAP method if the
number of children of a node is not restricted]). Use also an index on this column.

e descendants: all nodes x with self.preorder < x.preorder and self.postorder > x.postorder

e children: descendants+Dewey comparison, or add a depth column or depth function to the
Dewey type.

e ancestors: all nodes x with self.preorder > x.preorder and self.postorder < z.postorder.

e following: all nodes x with self.preorder < x.preorder

e preceding: all nodes with self.postorder > x.preorder (note: following and preceding do

not include the ancestors, but only nodes that are the roots of trees that completely follow/pre-
cede self!)

Optimizations:

e “gaps” in the preorder or postorder numbering reduce update efforts (since both are only used
for comparisons, that does not matter in most cases)

e use relative numbers wrt. the previous sibling or the parent (amortized analysis!). Note that
post(z) = pre(x) — depth(x) + number — of — descendants(x)
Proof: when a node is enumerated in postorder, the following nodes have been enumerated
before: all “preceding’nodes in preorder except the ancestors on the way back to the root,
additionally, all nodes in the subtree rooted in x.
e Thus, if for each node, the size of the subtree rooted in it is known, pre(x) and post(z) can be
computed as follows:
— pre(x) = sum of sizes of all subtrees that are rooted in preceding siblings of z’s ancestors +
#(ancestors), and

Semistructured Data and XML 11

— post(x) = sum of sizes of all subtrees that are rooted in preceding siblings of z’s ancestors
+ sum of sizes of the tree rooted in z - 1.

Further exercise (solutions to be sent to us):

e create suitable tables in SQL, including a Dewey Object Type,

e implement an XSLT stylesheet or a recursive XQuery function or a recursive OraXML PL/SQL
function (see later) that traverses an XML tree and creates suitable input statements,

e experiment with SQL queries for the axes.

