
Chapter 6
Running a Database: Safety and
Correctness Issues

• Transactions

• Safety against failure

Not discussed here:

• Access control, Authentication

240

6.1 Transactions: Properties and Basic Notions

Transaction:

• a unit of work from the user’s point of view.

• for the DBS: a process, characterized by a sequence of database accesses.

• requirements: ACID-properties:

Atomicity: A transaction is (logically) a unit that cannot be further decomposed: its effect is
atomic, i.e., all updates are executed completely, or nothing at all (“all-or-nothing”).

Concistency: A transaction is a correct transition from one state to another. The final state
is not allowed to violate any integrity condition (otherwise the (complete! – cf. atomicity)
transaction is undone and rejected).

Isolation: Databases are multi-user systems. Although transactions are running
concurrently, this is hidden against the user
(i.e., after starting a transaction, the user does not see changes by other transactions
until finishing his transaction, simulated single-user).

Durability: If a transaction completes successfully, all its effects are durable (=persistent).
I.e., no error situation (including system crash!) is allowed to undo them ⇒ safety.

241

Transactions consist of elementary actions:

• Read access: READ
By READ A (RA), the value of a DB-object A from the DB is copied to the local workspace
of the transaction.

• Write Access: WRITE
By WRITE A (WA), the value of a DB-object A is copied from the local workspace of the
transaction to the DB.

• BEGIN WORK and COMMIT WORK denote its begin (BOT - begin of transaction) and its
successful completion (EOT - end of transaction).

⇒ of the form BOT RA RB RC . . . WA . . . RD . . . WE EOT

• ROLLBACK WORK for undoing all its effects (ABORT).

• These elementary actions are physically atomic. At every timepoint, only one such action
is executed.

• in contrast, transactions are logically atomic, but several transactions may be executed in
an interleaved manner (see below).

242

6.2 Transaction models

FLAT TRANSACTIONS

Basic transaction model: Transactions are a “flat” (and short) sequence of elementary actions
without additional structure.
Example 6.1
Outline of a simple transaction for transferring money from account A to account B:

1. BEGIN WORK

3. debit (READ and WRITE) money from account A.

4. book money (READ and WRITE) on account B.

5. if account A negative, then ROLLBACK, otherwise COMMIT WORK. ✷

243

Atomicity

A transaction is logically atomic – even when executed interleaving with others

• all-or-nothing,

• potential rollback at the end,

⇒ requires isolation – other transactions must not use uncommitted written values (or also
rolled back)

⇒ rollback based on logging (see Slide 312 ff.).

Consistency

• Concept: check conditions only at the end of a transaction (COMMIT)

• Default in DB systems: Check after each atomic action

• Optional: declare CONSTRAINTs with DEFERRABLE INITIALLY DEFERRED to
postpone checks.

244

FLAT TRANSACTIONS WITH SAVEPOINTS

Limits of simple flat transactions: long transactions, e.g., travel booking (hotel, several
flights, rental car)

• partial rollback, for trying alternative continuations:

• SAVE WORK defines savepoints (intermediate states)

• sequences between savepoints are atomic (but in general not consistent and durable)

• ROLLBACK WORK(i) undoes effects back to savepoint i

• COMMIT WORK commits the whole transaction (ACID)

• complete ROLLBACK WORK undoes the whole transaction

245

NESTED TRANSACTIONS [OPTIONAL]

• internal (hierarchical) structuring of a transaction into subtransactions

• subtransactions can be executed serially, synchronous parallel, or asynchronous parallel

• transaction satisfies ACID, subtransactions only A&I.

Properties of Subtransactions

• atomicity

• consistency: not required – only for the root transaction

• isolation: required for rollback

• durability: not possible, since rollback of a superordinate (sub)transaction required also to
rollback “committed” subtransactions

246

Properties of Subtransactions (Cont’d)

• Commit: the local commit of a subtransaction makes its effects accessible only for its
superordinate transaction.

• root transaction commits if all immediate subtransactions commit.

• rollback: if some (sub)transaction is rolled back, all its subtransactions are rolled back
recursively (even when they committed locally)

• visibility: all updates of a subtransaction become visible to its superordinate transaction
when it commits.
All objects that are kept by a transaction are accessible for its subtransactions.
Effects are not visible for sibling transactions.

• above: “closed nested transactions”

• weaker visibility/isolation requirements: “open nested transactions”
require more complex rollback mechanisms

247

6.3 Multi-User Aspects

• In general, at any timepoint, several transactions are running.

• means interleaving (i.e., one step here, one step there, and again one step here)

• not necessarily true parallelism (requires multi-processor systems)

• techniques for interleaving are also sufficient for parallelism

Goal of multi-user policies: allow for as much interleaving as possible without the risk of
“unintended” results

Problem: transactions run on shared data.
⇒ enforce virtual isolation

248

TYPICAL ERROR SITUATIONS

For multiuser aspects, consider a scenario where a high number of short and long
transactions has to be processed:

(Online) Banking

A bank maintains branches at several cities; at each city multiple customers have accounts.
Customers are doing money transfers, cash withdrawals at ATMs (german: Geldautomaten);
and the bank computes the yearly interest rate (german: Zinsen) always on January 1st.

Consider the following relations:

• Account: Name, City, Amount

• Branch: City, Total
where “Total” contains the sum of all accounts at that place.

249

Lost update

money transfer A → B B taking cash at the ATM

SELECT amount INTO a
FROM Accounts WHERE name = ’Alice’

a := a - 100;

UPDATE Accounts
SET amount = a WHERE name = ’Alice’
SELECT amount INTO b
FROM Accounts WHERE name = ’Bob’

SELECT amount INTO c
FROM Accounts WHERE name = ’Bob’

b := b + 100;
c := c - 200;

UPDATE Accounts
SET amount = b WHERE name = ’Bob’

UPDATE Accounts
SET amount = c WHERE name = ’Bob’

• the money transfer (first update) is lost

• note: such problems can usually occur when values are calculated using earlier ones, not when the
database does mainly store-and-read (like Mondial)

250

Dirty Read

money transfer A → D fails A taking cash at the ATM

SELECT amount INTO a
FROM Accounts WHERE name = ’Alice’

a := a - 100;

UPDATE Accounts
SET amount = a WHERE name = ’Alice’
SELECT amount INTO d
FROM Accounts WHERE name = ’Dave’
· · · search and wait· · ·

SELECT amount INTO c
FROM Accounts WHERE name = ’Alice’
c := c - 200;
UPDATE Accounts
SET amount = c WHERE name = ’Alice’

Dave does not have an account here!
ABORT (i.e., ROLLBACK)

(what must be done now?)

• The second transaction reads and uses a value that is later undone

251

Non-repeatable Read
Sum of Accounts Money transfer A to C

sum := 0

SELECT amount INTO x
FROM Account WHERE name = ’Alice’

sum := sum + x

UPDATE Accounts
SET amount = amount - 100
WHERE name = ’Alice’

SELECT amount INTO x
FROM Account WHERE name = ’Bob’

sum := sum + x

UPDATE Accounts
SET amount = amount +100
WHERE name = ’Carol’

SELECT amount INTO x
FROM Account WHERE name = ’Carol’

sum := sum + x

• The value computed in the sum does not correspond to any database state
(and also not to any serial execution of both transactions)

252

Phantom

• sum of account balances equals stored total for each branch?

Check sum of account balances by branch Insert new account

SELECT SUM(amount) INTO sum
FROM Account WHERE city = ’Frankfurt’

INSERT INTO Accounts (name, city, amount)
VALUES (’Dave’, ’Frankfurt’, 1000)

UPDATE Branches
SET total = total + 1000
WHERE city = ’Frankfurt’

SELECT total INTO x
FROM Branches WHERE city = ’Frankfurt’

IF x 6= sum THEN
<error handling>

• similar to non-repeatable read

253

6.4 Serializability

• A schedule wrt. a set of transactions is an interleaving of their (elementary) actions that
does not change the inner order of each of the transactions.

• A schedule is serial if the actions of each individual transaction are immediately following
each other (no interleaving).

Example 6.2 (Bank Accounts: Transferring Money from A to B)
T1 = RA; A:=A-10; WA; RB; B:=B+10; WB, T2 = RA; A:=A-20; WA; RB; B:=B+20; WB

Some schedules (without computation steps):

S1 = R1A W1A R1B W1B R2A W2A R2B W2B (serial)

S2 = R1A R2A W1A W2A R1B R2B W1B W2B

S3 = R1A W1A R2A W2A R1B W1B R2B W2B

S4 = R1A W1A R2A W2A R2B W2B R1B W1B

S5 = R2A W2A R2B W2B R1A W1A R1B W1B (serial)
✷

... which of them are “good”?
(for n transactions, there is an exponential number of candidates)

254

SERIALIZABILITY CRITERION FOR PARALLEL TRANSACTIONS

• “Isolation” requirement:
A transaction must not see results from other (not yet committed) ones.

• The serial ones are good.

• are there other “good” ones?

Definition 6.1
A schedule is serializable if and only if there exists an equivalent serial schedule. ✷

255

Example 6.2 (Cont’d: Bank Accounts Interleaved)
A=B=10; T1: RA; A:=A-10; WA; RB; B:=B+10; WB T2: RA; A:=A-20; WA; RB; B:=B+20; WB

T1 T2 T1 T2 T1 T2 T1 T2

RA RA RA RA

A:=A-10 RA A:=A-10 A:=A-10

WA A:=A-10 WA WA

RB A:=A-20 RA RA

B:=B+10 WA A:=A-20 A:=A-20

WB WA WA WA

RA RB RB RB

A:=A-20 RB B:=B+10 B:=B+20

WA B:=B+10 WB WB

RB B:=B+20 RB RB

B:=B+20 WB B:=B+20 B:=B+10

WB WB WB WB

S1: serial S2: not serializable S3: serializable S4: serializable?

A=-20, B=40 A=-10, B=30 A=-20,B=40 A=-20,B=40

A+B=20 A+B=20 A+B=20 A+B=20 ✷

256

Problem: what means “equivalence” in this context?

• consider each step in each transaction?
Then, (4) is not equivalent with (1):
in (1) T1 reads B = 10, in (4), T1 reads B = 30

• consider the initial and final database state?
Then, (4) and (1) would be equivalent.

Example 6.3
Consider again Example 6.2 for A=B=10;
T ′
1: RA; A:=A*1.05; WA; RB; B:=B*1.05; WB (Yearly Interest Rate) and

T2: RA; A:=A-10; WA; RB; B:=B+10; WB (Money Transfer).
Consider S1, S5 := T2T1, S3, and S4. ✷

257

6.4.1 Formalization of the Semantics of Transactions

• How to show that for all possible circumstances, a schedule is serializable?

• Theory & algorithms depend only on the READ and WRITE actions, not on the semantics
of the computations in-between.

(this would require theorem-proving instead of symbolic algorithms)

Transactions T and schedules S are represented as a sequence of their READ- and
WRITE-Actions (actions are assigned to transactions by indexing).

• take a logic-based framework!

258

ASIDE: BASIC NOTIONS OF FIRST-ORDER PREDICATE LOGIC

(you probably have learnt this in “Discrete Mathematics” or in “Formal Systems”)

• An first-order signature Σ contains function symbols and predicate symbols, each of
them with a given arity (function symbols with arity 0 are constants).

• The set of ground terms over Σ is built inductively over the function symbols: for f ∈ Σ

with arity n and terms t1, . . . , tn, also f(t1, . . . , tn) is a term.

• A first-order structure S = (D, I) over a signature Σ consists of a nonempty set D
(domain) and an interpretation I of the signature symbols over D which maps

– every constant c to an element I(c) ∈ D,

– every n-ary function symbol f to an n-ary function I(f) : Dn → D,

– every n-ary predicate symbol p to an n-ary relation I(p) ⊆ Dn.

259

LOGIC FORMALIZATION OF THE SEMANTICS OF TRANSACTIONS

• Let D denote the domain of the database objects.

• Consider a transaction T , with a write action WX where RY1, . . . , RYk k ≥ 0 are the read
actions that are executed by T before WX.

• The value written to X by WX is denoted by

fT,X(Y1, . . . , Yk)

where
fT,X : Dk → D .

(fT,X encodes the functional relationship (computation) between the read-values and the
written value)

• the functions fT,X abstract the calculation of the value of X that is then written by WX in
T ,

• their actual interpretation is given by the computation of the transaction.

260

APPLICATION TO TRANSACTIONS AND SCHEDULES

• for every transaction and every schedule, the final values (call them a∞, b∞, ...) can be
expressed in terms of the tT,X of the contributing transactions,

• the constants a0, b0 are interpreted by initial values,

• the actual interpretation of the functions is given by the transaction.

Consider the single transaction runs:

T1: RA read a0
A := A− 10
WA write fT1,A(a0)

RB read b0
B := B + 10
WB write fT1,B(a0, b0)

a∞ = fT1,A(a0),
b∞ = fT1,B(a0, b0)

T ′
1: RA read a0

A := A ∗ 1.05
WA write fT ′

1,A
(a0)

RB read b0
B := B ∗ 1.05
WB write fT ′

1,B
(a0, b0)

a∞ = fT ′
1,A

(a0),
b∞ = fT ′

1,B
(a0, b0)

both induce the same final term structure. The interpretations differ:
T1: fT1,A(A) = A− 10, fT1,B(A,B) = B + 10,
T ′
1: fT ′

1,A
(A) = A ∗ 1.05, fT ′

1,B
(A,B) = B ∗ 1.05.

261

Application to Single Transactions

• for given transactions (i.e. a given interpretation of fT,X), properties of the final values
can formally be proven, e.g.,
T1 : a∞ + b∞ = a0 + b0,
T ′
1 : a∞ + b∞ = (a0 + b0) ∗ 1.05

• later/Exercise: intra-transactional optimization by interchanging non-conflicting operations
of a transaction.

262

Application to Schedules

Example 6.4
Consider again the transactions T1 = RA WA RB WB and T2 = RA WA RB WB

Let the initial state be given by values a0, b0.

Schedule T1T2 (serial) Schedule T2T1 (serial)

T1 : RA a0 T2 : RA a0

WA fT1,A(a0) WA fT2,A(a0)

RB b0 RB b0

WB fT1,B(a0, b0) WB fT2,B(a0, b0)

T2 : RA fT1,A(a0) T1 : RA fT2,A(a0)

WA fT2,A(fT1,A(a0)) WA fT1,A(fT2,A(a0))

RB fT1,B(a0, b0) RB fT2,B(a0, b0)

WB fT2,B(fT1,A(a0), fT1,B(a0, b0)) WB fT1,B(fT2,A(a0), fT2,B(a0, b0))
✷

• for a given interpretation, the evaluation of the terms yields the final values,

• the terms themselves additionally encode the data flow through the schedule.

263

EQUIVALENCE OF SCHEDULES

Definition 6.2
Two schedules S, S′ (of the same set of transactions) are equivalent, if for every initial state,
corresponding atomic actions read/write the same values in S and S′. ✷

Corollary 6.1
For two equivalent schedules S and S′ executed on the same initial state, S and S′ generate
the same final states. ✷

Proof: consider the last write actions for each data item.

• according to the Definition 6.2, equivalence can only be checked by investigating both
schedules step-by-step.

• In the above formalization, this is encoded into the (final) terms: the execution of a
schedule is traced symbolically
(“Herbrand interpretation” – every term is interpreted “as itself”).

264

EQUIVALENCE OF SCHEDULES

Exercise 6.1
Consider again Example 6.2.

Show by the detailed tables with f(...) that Schedule S2 and Schedule S4 are not serializable,
but Schedule S3 is serializable.

Give at least one more serializable schedule. ✷

265

Example 6.5 (Solution of Exercise 6.1)
Consider again the transactions T1 = RA WA RB WB and T2 = RA WA RB WB

and the schedules S2 and S4. Let the initial state again be given by values a0, b0.

Schedule S2 Schedule S4

RA a0 RA a0

RA a0 WA fT1,A(a0)

WA fT1,A(a0) RA fT1,A(a0)

WA fT2,A(a0) WA fT2,A(fT1,A(a0))

RB b0 RB b0

RB b0 WB fT2,B(fT1,A(a0), b0)

WB fT1,B(a0, b0) RB fT2,B(fT1,A(a0), b0)

WB fT2,B(a0, b0) WB fT1,B(a0, fT2,B(fT1,A(a0), b0))

For S3, the terms are the same for every R/W as for S1.
For S4, the blue-red-blue “shows” that there can be no serial schedule that generates the
same terms. ✷

266

A STEP TOWARDS MORE ABSTRACTION

Summary and conclusions:

• the fs are abstractions for the actual functions/computations of the transactions,

• we are actually not interested at all, what the fs are,

• but (mainly) in the term structure and the data flow (indicated by the colors above),

• the “history” of a data item is described by the f -terms.

⇒ find another way to represent how information flows and “who reads and writes what
values”.

267

6.4.2 Theoretical Investigations

Consider a schedule S together with two additional distinguished transactions T0, T∞:
T0 generates the initial state, and T∞ reads the final state of S.

• T0 is a transaction that executes a write action for every database object for which S

executes a read or write action.

• T∞ is a transaction that executes a read action for every database object for which S

executes a read or write action.

The schedule Ŝ = T0 S T∞ is the augmented schedule to S.

Assumption (without loss of generality):

• each transaction reads and writes an object at most once,

• if a transaction reads and writes an object, then reading happens before writing.

Corollary 6.2
Two schedules S, S′ (of the same set of transactions) are equivalent if and only if for every
interpretation of the write actions, all transactions read the same values for Ŝ and Ŝ′. ✷

Check all these terms for an exponential number for candidates?

268

DEPENDENCY GRAPHS

Consider a schedule S. The D-Graph (dependency graph) of S is a directed graph
DG(S) = (V,E) where V is the set of actions in Ŝ and E is the set of edges given as follows
(i 6= j):

• if Ŝ = . . . RiB . . .WiA . . . , then RiB → WiA ∈ E,
(i.e., Ti reads B (and possible uses it) and then writes a value A)

• if Ŝ = . . .WiA . . .RjA . . . , then WiA → RjA ∈ E,
if there is no write action to A between WiA and RjA in Ŝ.
(i.e., Tj reads a value A that has been written by Ti)

A transaction T ′ is dependent of a transaction T , if in S, either T ′ reads a value that has
been written by T , or by a transaction that is dependent on T .

269

Example 6.6
Consider again Example 6.2: T1 = RA WA RB WB; T2 = RA WA RB WB

Consider the serial schedule T1T2 and S3 = R1A W1A R2A W2A R1B W1B R2B W2B.

Dependency graphs: W0A
W0B

R1A

W1A

R1B

W1B
R2A

W2A

R2B

W2B

R∞A
R∞B

W0A
W0B

R1A

W1A
R2A

W2A
R1B

W1B
R2B

W2B

R∞A
R∞B

✷Theorem 6.1
Two schedules S, S′ (of the same transactions) are equivalent if and only if
DG(Ŝ) = DG(Ŝ′). ✷

Check these graphs for an exponential number for candidates?

270

... and now to the

Proof [Optional]

Each transaction T with n, n ≥ 1 write actions on A1, . . . , An induces a set
FT = {fT,A1

, . . . , fT,An
} of function symbols that are used for representing the computations

associated with the write actions.

Given a domain D, every transaction also induces an interpretation

ST = (D, IFT
) such that each I(fT,Ai

) is a mapping Dki → D .

Analogously, the interpretation of a set T1, . . . , Tm of transactions has the form
S = (D, FT1

∪ . . . ∪ FTm
).

Assume an action a of a schedule S. If a is a write action, then aS(I) is the value that is
written by a in S under the interpretation I. If a is a read action, then aS(I) is the value that is
read by a.

For a node a of the D-graph DG(S), the restriction of DG(S) to a and its predecessors is
denoted by predS(a) – (this is the portion of the graph consisting of all actions that contribute
to the value that is read/written by a).

271

Proof (Cont’d)

“⇐”: We show that for all actions a in S,

predS(a) = predS′(a) ⇒ aS(I) = aS′(I)

for arbitrary interpretations I by induction over the number of nodes in predS(a).

Assume that a is an action in a transaction T to a database object x.

• predS(a) contains a single node. Then, a is this node.

– a cannot be a read action, as any read action RA would have at least a write action
W0 in T0 as predecessor.

– if a is a write action on A, fT,A is a constant function (depending on no input/original
values) and thus, aS(I) = aS′(I) for all I.

• predS(a) contains more than a single node. Because of predS(a) = predS′(a), a has the
same predecessors b1, . . . , bk in both graphs. By induction hypothesis, for each of them,
bS(I) = bS′(I).

– if a is a read action, the conclusion aS(I) = aS′(I) is again trivial.

– if a is a write action on A,
aS(I) = fT,A(b1S(I), . . . , bkS(I)) = fT,A(b1S′(I), . . . , bkS′(I)) = aS′(I).

Thus, in both sequences, the same values are read and written.

272

Proof (Cont’d)

“⇒”:

Since S and S′ are assumed to be equivalent, all transactions in S and S′ read the same
values for arbitrary interpretations I.

Consider the (Herbrand-) [that means, using uninterpreted ground terms] interpretation H to
the transactions in S:

• D = {fT0,A1 , fT0,A2 , . . . , fT1,A1(. . . , fT0,A1 , . . .), . . . ,

fT2,A1
(. . . , fT0,A1

, . . . , fT1,A1
(. . . , fT0,A1

, . . .), . . .), . . .}
is the set of (ground) terms built over the symbols that are assigned to the write actions.

• fT,A : Dk → D: applying fT,A to values v1, . . . , vk yields the term fT,A(v1, . . . , vk).

For every action a in S and S′, aS(H) and aS′(H) encode predS(v) and predS′(v), resp.

(e.g., if for a write action a = W1B, aS(H) = fT1,B(a0, fT2,B(fT1,A(a0), b0)), then it has a
predecessor R1A that read a0, and a predecessor R1B that read the value
fT2,B(fT1,A(a0), b0) written by W2B that in course had (i) a predecessor R2A that read value
fT1,A(a0) written by W1A that in turn had a predecessor R1A that read a0, and (ii) a
predecessor R2B that read b0).

Thus, since vS(H) = vS′(H), DG(S) = DG(S′).

273

NEXT STEP TOWARDS MORE ABSTRACTION

• we are even not interested in the Dependency Graph, only in the question for which
schedules there is a serial schedule with the same DG.

Example 6.7
Consider the DG of S4 Example 6.2 (Example/Exercise) ✷

• intra-transaction edges are not relevant
(for a given transaction they are the same in all DGs),

• edges between transactions are important
(see above example),

• some other relationships between transactions are also important.

⇒ they tell, what conditions an equivalent serial schedule must satisfy!

• ... if they are satisfiable, there is an equivalent serial schedule (or several of them).

274

THEORY: EQUIVALENCE CLASSES OF SCHEDULES

Recall from Discrete Mathematics

A binary relation ∼ is an equivalence relation on a set X if it is

• reflexive: x ∼ x for every x ∈ X,

• symmetric: x ∼ y ⇒ y ∼ x for every x, y ∈ X

• transitive x ∼ y ∧ y ∼ z ⇒ x ∼ z for every x, y, z ∈ X.

Equivalence Classes

For an equivalence relation ∼ ⊆ X ×X, the equivalence class [x] is defined as

[x] := {y ∈ X|x ∼ y}

Note: two equivalence classes are either the same, or disjoint.

275

Equivalence Classes of Schedules and Serializable Schedules

On the set of schedules, let ∼ be defined as S ∼ S′ if DG(S) = DG(S′). A schedule S is
serializable, if S ∈ [S′] for a serial schedule S′.

The following properties hold:

• given n transactions, there are at most n! equivalence classes of serializable schedules,

• for two serial schedules, [S1] = [S2] is possible (when two or more transactions have no
conflicts at all),

• there are many more equivalence classes of non-serializable schedules.

276

Neighboring Schedules

Definition 6.3
Two schedules S, S′ (of the same set of transactions) are neighbors if S′ can be obtained from
S by exchanging a single pair of atomic actions a1, a2. ✷

Note:

• for a given set of transactions T , a1, a2 above must belong to different transactions to
obtain a valid schedule of T .

• Aside: if exchanging actions of the same transaction, the approach is applicable to
intra-transaction optimization:

Actions in a transaction can be exchanged if the D-Graph is not effected (e.g., RiA and
RiB).

277

WHEN ARE NEIGHBORING SCHEDULES EQUIVALENT?

Let S = S1aiajS2 and S′ = S1ajaiS2 be neighboring schedules.

Consider each pair of types of actions possible for (ai, aj).

• obviously, actions on different data items can be exchanged without effecting the
D-Graph.

RR: RiA,RjA: no change.

WR: WiA,RjA: WR is an edge in the D-Graph, exchanging the actions removes this edge
and adds an edge from the preceding WjA to RjA.

RW: RiA,WjA: symmetric. RW represents a “no-edge” in the DG.

WW: WiA,WjA: For the next RkA (if no Wℓ is in-between [this condition will become relevant
later – note also that T∞ is needed here]), there is an edge in the D-Graph WjA → RkA;
after exchanging, there is an edge WiA → RkA.

In the RW/WR/WW cases the D-Graph is different from before, S 6∼ S′.

The respective pairs of actions ai, aj determine a constraint (that distinguishes S from S′ and
[S] from [S′]) on the equivalent serial schedule that Ti must be executed before Tj .

278

CONFLICT GRAPH: IDEA

Every schedule can be characterized wrt. the equivalence class it belongs to by these
“borders” between their member sets.

• the constraints state a topological order on the set T of transactions,

• if the graph is cyclic, then the set of constraints is not satisfiable (= there is no equivalent
serial schedule).

Note that [S] then also exists, but does (usually; cf. later) not contain any serial schedule;
only under certain conditions, there may be an equivalent serial schedule.

• if the graph does not contain a cycle, the constraints can be interpreted as a topological
order that characterizes the equivalence class.

279

CONFLICT GRAPH: DEFINITION

Consider a schedule S. The C-Graph (conflict graph) of S is a directed graph CG(S) = (V,E)

where V is the set of Transactions in Ŝ and E is a set of edges given as follows (i 6= j):

• if S = . . .WiA . . .RjA . . . then Ti → Tj ∈ E, if there is no write action to A between WiA

and RjA in S (WR-conflict).

• if S = . . .WiA . . .WjA . . . then Ti → Tj ∈ E, if there is no write action to A between WiA

and WjA in S (WW-conflict).

• if S = . . . RiA . . .WjA . . . then Ti → Tj ∈ E, if there is no write action to A between RiA

and WjA in S (RW-conflict).

Theorem 6.2
If the conflict graph CG(S) of a schedule S is cycle-free, then S is serializable. ✷

280

Conflict Graph Theorem: Proof

Assumed: Since CG(S) is cycle-free.

Interpret CG(S) as a topological order of the nodes (i.e., of the transactions).
Short: let S′ a serial schedule according to this ordering. Then, DG(S) = DG(S′) and
[S] = [S′].

Long:

Let CG∗(S) denote the transitive closure of CG(S).

For any serial S′ = Ti1 . . . Tin over T1, . . . , Tn (i.e., {i1, . . . , in} = {1, . . . , n}), let

≤S′ := {(n,m)|Tn occurs before Tm in S′}

S′ ∼ S ⇔ CG∗(S) ⊆ ≤S′ (i.e., if the orderings are consistent).

As CG(S) is noncyclic, it is a (satisfiable) topological ordering and such an S′ exists.

Remarks

Note that the ordering given by CG(S) may be incomplete, i.e. there can be serial S′ 6= S′′

both in the same equivalence class: [S] = [S′] = [S′′].

281

CONFLICT GRAPHS

Example 6.8
Consider the CGs of S1, S3, S4 from Example 6.2. ✷

Example 6.9
Consider the schedule

S = R1A W1A R2A R3A R2B R3C W3C W2B .

Draw the Conflict Graph, interpret it as a topological order and give all equivalent serial
schedules. Draw the DG of S and the DGs of the equivalent serial schedules. ✷

282

NEIGHBORING SCHEDULES

• Given a serial schedule, equivalent schedules can be constructed by considering
neighboring schedules:
“It is allowed to postpone action ai of Ti and instead already process action aj from Tj?”
(cf. Schedule S3 in Example 6.2)

• define ∼1 (one-change-equivalence) by

S1 ∼1, S2 :⇔ S1 and S2 are neighbors and S1 ∼ S2

• define ∼n (n-change-equivalence) by

S1 ∼n, S2 :⇔ there are S1, S2, . . . , Sn such that Si ∼1 Si+1 for all 1 ≤ i < n

• Obviously, ∼ ⊆ ⋃
n∈IN

∼n.

(When) does equality hold?

283

BLIND WRITES

Note that there are serializable schedules whose C-Graph contains cycles:

Example 6.10
Consider the following schedule S:

T1: RA WB

T2: RB WB

T3: RC WB

red lines: conflicts inducing the CG

black, dashed lines: dependency graph

The C-Graph containing the edges (3,1), (3,2), (2,1), and (1,2) is cyclic.

Nevertheless, S′ = T1T3T2 is an equivalent (i.e., with the same dependency graph) serial
schedule:

R1A W1B R3C W3B R2B W2B

with conflict graph (1,3), (3,2).

Why this? W1B is not used anywhere in S. It is also not used in S′ (since T3 does not read it
before writing B). W3B and W1B are “Blind Writes” (a transaction does a WX without a RX

before). ✷

284

CLOSER LOOK AT WW CONFLICTS

Consider again Slide 278 and WiA WjA-conflicts:

WiA
WjA

RkA

WjA
WiA

RkA

If there is another WℓA before the next RkA, the D-Graph is not changed when interchanging
ai and aj :

WiA

WjA

WℓA

RkA

WjA

WiA

WℓA

RkA

• A write WjA “cuts” the data flow from the preceding WiA.

• WW-conflicts where the second write is never read can be ignored.

• the above fragments can only be completed to equivalent serializable schedules if WℓA

and either WiA or WjA are blind writes.

285

CLOSER LOOK AT RW CONFLICTS

Consider again Slide 278 and RiA WjA-conflicts:

RiA
WjA

WjA
RiA

Exchanging RiA and WjA leads to a dataflow. If WjA is not put immediately before, but much
earlier, the original dataflow is (locally) unchanged:

WℓA

RiA

WjA

WjA

WℓA

RiA

• the above fragments can only be completed to equivalent serializable schedules if WjA is
followed by a blind write in both cases (which is exactly the case as in Example 6.10).

286

EQUIVALENT SCHEDULES IN PRESENCE OF BLIND WRITES

• Example 6.10 shows that in presence of two blind writes a completely different schedule
can be equivalent.

• WR-conflicts represent actual data flow – they must be the same in the corresponding
serial schedule.

• WW-conflicts and RW-conflicts can be ignored under certain conditions (needing at least
two blind writes on the corresponding data item)

• In the RW case, there is no path wrt. the “neighborship” relation from S′ to S that stays
inside [S] = [S′], i.e., [S] 6∼n [S′] for any n.

287

C-Graph-Serializability

Definition 6.4
A schedule is C-serializable (conflict-serializable) if its C-Graph is cycle-free. ✷

Theorem 6.3
If for a set T , there are no “blind writes”, i.e., for each T ∈ T ,

T = . . .WA . . . =⇒ T = . . . RA . . .WA . . . ,

then every schedule S over T is serializable if and only if S is C-serializable. ✷

Proof: Exercise.

Note: In the sequel, serializability always means C-serializability.

288

6.4.3 More Detailed Serializability Theory [Optional]

The C-Graph is more restrictive than necessary (cf. the above example):

For a more liberal criterion, consider only the following situation:

S = . . .WiA . . .RjA . . .

and there is no write action on A between Wi and Rj .

• In every equivalent serial schedule, Ti precedes Tj ,

• if WkA ∈ S, there is no equivalent serial schedule s.t. Tk is between Ti and Tj .
But, it can be before Ti or after Tj .

289

POLYGRAPH

For a schedule S, the polygraph P (S) is a tuple P (S) = (V,E, F), where

1. V is the set of transactions in S,

2. E is a set of edges, given by the WR-conflicts in S,

3. F is a set of pairs of edges (alternatives):
for all i 6= j such that S = . . .WiA . . .RjA . . . and there is no write action to A between
WiA and RjA, and all WkA in S where k 6= i, k 6= j:

(Tk → Ti, Tj → Tk) ∈ F.

(include start = W0(all) and end = R∞(all)!)

A graph (V,E′) is compatible to a polygraph (V,E, F) if E ⊆ E′ and E′ contains for each
alternative exactly one of the edges.

A polygraph P (S) = (V,E, F) is cycle-free if there is a cycle-free compatible graph (V,E′).

Theorem 6.4
A schedule S is serializable if and only if its polygraph is cycle-free. ✷

Note: The test for cycle-freeness of a polygraph is NP-complete.

290

Example 6.11
Consider again Example 6.10.

T1: R(X) W(Y)

S: T2: R(Y) W(Y)

T3: R(Z) W(Y)

From (2), there is the edge (3, 2) ∈ E.

From (3), consider

• W3(Y)/R2(Y): For W1(Y) ((1, 3), (2, 1)) has to be added to F .

• W0(X)/R1(X), W0(Z)/R3(Z): there is no W (X) and W (Z). Do nothing.
Note that the original value of Y is never read.

• W2(Y)/R∞(Y). For W1(Y) and W3(Y), add ((1, 2), (∞, 1)) and ((3, 2), (∞, 3)) to F .

Since edges like (n, 0) (a transaction before start) and (∞, n) (a transaction after end) do not
make sense, the only compatible graphs are

• (3,2), (1,3), (1,2), (3,2) (cycle-free), and

• (3,2), (2,1), (1,2), (3,2) (cyclic).

The first of these gives the equivalent serial schedule T1T3T2. ✷

291

... and now to the

Proof of Theorem 6.4

We need two Lemmata:

Lemma 6.1
For two equivalent schedules S and S′, P (S) = P (S′). ✷

Proof: Follows from equality of the D-Graphs (which are also based on WR-conflicts).

Lemma 6.2
For a serial schedule S, P (S) is cycle-free. ✷

Proof: Construct a graph G that contains an edge Ti → Tj if and only if Ti is before Tj in S.
G is cycle-free and compatible to P (S).

292

Proof of the theorem

“⇒”: follows immediately from the above lemmata.

“⇐”: Consider a cycle-free graph G that is compatible to P (S). Let S′ a serial schedule
according to a topological sorting of G.
We show that S and S′ are equivalent, i.e., DG(S) = DG(S′).

Assume DG(S) 6= DG(S′). Thus, there are actions WiA,WkA,RjA from different
transactions such that

• in S, Tj reads a value of A that has been written by Ti. Thus,

– the E component of P (S) contains an edge Ti → Tj ,

– The F component of P (S) contains a pair (Tk → Ti, Tj → Tk).

• in S′, Tj reads a value of A that has been written by Tk .

Because of compatibility, G contains the edge Ti → Tj .
Since S′ is serial, it is of the form S′ = . . . Ti . . . Tj

Since Tj reads A from Tk in S′ (assumption), Tk is be executed later than Ti, and before Tj .
Thus, S′ = . . . Ti . . . Tk . . . Tj

Since G is cycle-free, there are no edges Tk → Ti or Tj → Tk.

Then, G cannot be compatible to P (S) (the pair in F is not satisfied).

293

6.5 Scheduling

The Scheduler of a database system ensures that only serializable schedules are executed.
This can be done by different strategies.

Input: a set of actions of a set of transactions (to be executed)
Output: a serializable sequence (= the schedule to be actually executed) of these actions

• runtime-scheduling, incremental, “online-algorithm” that does not need to test an
exponential number of possibilities a priori, but which runs nearly in linear time.

• at each timepoint, new transactions can “arrive” and have to be considered

Different Types of Strategies

• Supervise the schedule, and with the first non-serializable action, kill the transaction (→
C-graph, timestamps)

• Avoidance strategies: avoid at all that non-serializable schedules can be created (→
Locking),

• Optimistic Strategies: keep things running even into non-serializable schedules, and
check only just before committing a transaction (→ read-set/write-set).

294

Scheduling Strategies

• Based on the conflict graph:

The scheduler maintains the conflict graph of the actions executed so far (partial
schedule).

Let S the current (partial) schedule and action the next action of some transaction T .

If CG(S · action) is cycle-free, then execute action. Otherwise (action will never be
conflict-free in this schedule) abort T and all transactions that depend on T (i.e., that have
read items that have been written by T before), and remove the corresponding actions
from S. Restart T later.

Note: not only the CG must be maintained, but all earlier actions that can still be part of a
conflict (i.e., for each tuple, all actions backwards until (including) the most recent write).

Exercise: S4 from Example 6.2.

295

Scheduling Strategies (Cont’d)

• Timestamps:
Each transaction T is associated to a unique timestamp Z(T).
(thus, transactions can be seen as ordered).

Let S the current (partial) schedule and action the next action of some transaction T .

If for all transactions T ′ that have executed an action a′ that is in conflict with action,
Z(T ′) ≤ Z(T) (*), then execute action. Otherwise abort T (T “comes too late”) and all
transactions that depend on T , and remove the corresponding actions from S. Restart T
later (with new timestamp).

Implementation: For any action (read and write) on a data item V , the latest timestamp
is recorded at V as Zr(V) or Zw(V). Then, (*) is checked as Z?(T) ≥ Z?(V) (set “?”
according to conflict matrix), and if an action is executed, then Z(V) is set to Z(T).

• Lock-based strategies: see next section.

296

Scheduling Strategies (Cont’d)

• Optimistic Strategies:
(Assumption: “there is no conflict”)

Let S the current (partial) schedule. A transaction T is active in S, if an action of T is
contained in S, and T is not yet completed.

Let readset(T), writeset(T) the set of objects that have been read/written by a transaction
T .

Let action the next action, and T the corresponding transaction.

Execute action and update readset(T), writeset(T).

If action is the final action in T , then check the following:

– if for any other active transaction T ′:

* readset(T) ∩ writeset(T ′) 6= ∅,

* writeset(T) ∩ writeset(T ′) 6= ∅,

* writeset(T) ∩ readset(T ′) 6= ∅.

then abort T and all transactions that depend on T , and remove the corresponding
actions from S.

297

6.6 Locks

• access to database objects is administered by locks

• transactions need/hold locks on database objects:
if T has a lock on A, T is has a privilege to use this object

• privileges allow for read-only, or read/write access to an object:

– Read-privilege: RLOCK (LRX)

– Read and write-privilege: WLOCK (LWX)

• operations:

– LOCK X (LX): apply for a privilege for using X.

– UNLOCK X (UX): release the privilege for using X.

• lock- and unlock operations are handled like actions and belong to the action sequence of
a transaction.

• each action of a transaction must be inside a corresponding pair of lock-unlock-actions.
(i.e., no action without having the privilege)

298

Example 6.12
Consider again Example 6.2: T = RA WA RB WB

Possible handling of locking actions:

• T = LA RA WA UA LB RB WB UB

• T = LA LB RA WA RB WB UA UB

• T = LA RA WA LB RB WB UA UB

• T = LA RA WA LBUA RB WB UB ✷

299

LOCKING POLICIES

Locking policies (helping the scheduler) must guarantee correct execution of parallel
transactions.

• privileges are given according to a compatibility matrix:

Y: requested privilege can be granted

N: requested privilege cannot be granted

• if there is only one privilege (“use an object”):

requested privilege

granted privilege (for the same object):

LOCK

LOCK N

• if read and write privilege are distinguished:

RLOCK WLOCK

RLOCK Y N

WLOCK N N

i.e., multiple transactions reading the same ob-
ject are allowed.

300

PROBLEMS

• Livelock: It is possible that a transaction never obtains a requested lock (if always other
transactions are preferred).
Solution: e.g., first-come-first-served strategies

• Deadlock: during execution, deadlocks can occur:

Transactions: T1: LOCK A; LOCK B; RA WA RB WB UNLOCK A,B;

T2: LOCK B; LOCK A; RA WA RB WB UNLOCK A,B;

Execution: T1: LOCK A

T2: LOCK B

Deadlock: no transaction can proceed.

301

Avoiding and resolving deadlocks

• each transaction applies for all required locks when starting (in an atomic action).

• a linear ordering of objects. Privileges must be requested according to this ordering.

• maintenance of a waiting graph between transactions: The waiting graph has an edge
Ti → Tj if Ti applies for a privilege that is hold/blocked by Tj .

– a deadlock occurs exactly if the waiting graph is cyclic

– it an be resolved if one of the transactions in the cycle is aborted.

302

Note: locks alone do not yet guarantee serializability.

Example 6.13
Consider again Example 6.2 where T1 and T2 are extended with locks:

T = LA RA WA UA LB RB WB UB

Consider Schedule S4 (which was not serializable):

S4L = L1A R1A W1A U1A L2A R2A W2A U1A

L2B R2B W2B U2B L1B R1B W1B U1B ✷

Only correct use and policies do.

We need a protocol/policy that – if satisfied – guarantees serializability.

303

2-PHASE LOCKING PROTOCOL (2PL)

“After the first UNLOCK, a transaction must not execute any LOCK.”

i.e., each transaction has a locking phase and an unlocking phase.

Example 6.14
Consider again Example 6.12:

Which transactions satisfy 2PL?

• T = LA RA WA UA LB RB WB UB (no)

• T = LA LB RA WA RB WB UA UB (yes)

• T = LA RA WA LB RB WB UA UB (yes)

• T = LA RA WA LB UA RB WB UB (yes!) ✷

The last LOCK-operation of a transaction T defines T ’s locking point.

304

Theorem 6.5
The 2-Phase-Locking Protocol guarantees serializability. ✷

Proof: Consider a schedule S of a set {T1, T2, . . .} of two-phase transactions.

Assume that S is not serializable, i.e., CG(S) contains a cycle, w.l.o.g.
T1 → T2 → . . . → Tk → T1. Then, there are objects A1, . . . , Ak such that

S = . . . (W1A1) U1A1 . . . L2A1 (R2A1) . . .

S = . . . (W2A2) U2A2 . . . L3A2(R3A2) . . .
...

S = . . . (Wk−1Ak−1) Uk−1Ak−1 . . . LkAk−1 (RkAk−1) . . .

S = . . . (WkAk) UkAk . . . L1Ak (R1Ak) . . .

Let li the locking point of Ti. Then, the above lines imply that l1 is before l2, that is before l3

etc, and lk−1 before lk, that is before l1. Impossible.

305

Properties of 2PL

2-Phase locking is optimal in the following sense:

For every non 2-phase transaction T1 there is a 2-phase transaction T2 such that for T1, T2

there exists a non-serializable schedule.
(T1 is then of the form . . . UX . . . LY . . .)

Example 6.15
Consider the non-2PL transaction from Example 6.14 and a 2PL transaction

T1 = L1A R1A W1A U1A L1B R1B W1B U1B

T2 = L2A L2B R2A W2A R2B W2B U2A U2B

The following schedule S (= S4 from Examples 6.2) is possible that has been shown not to be
serializable:

S = L1A R1A W1A U1A L2A L2B R2A W2A

R2B W2B U2A U2B L1B R1B W1B U1B ✷

306

Properties of 2PL (Cont’d)

“optimal” does not mean that every serializable schedule can also occur under 2-phase
locking:

Example 6.16
The schedule S

S = R1A R2A W2A R3B W3B R1B W1B

is serializable (equivalent to T3 T1 T2), but there is no way to add LOCK/UNLOCK actions to
T1 that satisfy the 2PL requirement such that S is an admissible schedule. ✷

307

STRICT 2PL

Consider Schedule S3 from Example 6.2 with 2PL-Locks:

S3 = L1A R1A W1A L1B U1A L2A R2A W2A L2B U2A R1B W1B U1B R2B W2B U2B.

Consider the case that T1 fails as follows:

L1A R1A W1A L1B U1A L2A R2A W2A L2B U2A R1B ROLLBACK1

• T2 has already read A (dirty read) and must also be rolled back.

• Dirty reads (and cascading rollbacks) can be avoided, if the locks are only released after
EOT (“Strict 2PL”): T1 = L1A R1A W1A L1B R1B W1B EOT1 U1A U1B.

• the user does not have to specify Lock/unlock at all:

– every item is locked when used for the first time (done via the Access Manager),

– the transaction manager unlocks all items of a transaction after EOT.

308

LOCKING GRANULARITY

• the database consists of relations that are stored in blocks that contain tuples.

Database

Relation1

Block1,1 Block1,n1

Tuple(1,n1),1 Tuple(1,n1),mn1

. . . Relationk

Blockk,1 Blockk,n1

• find a compromise between maximal parallelism and number of locks.

• transactions that use all tuples of a relation: lock the relation

• transactions that lock only some tuples of a relation: lock the tuples.

309

LOCKING GRANULARITY

Having only tuple-locks and 2PL can still lead to non-serializable schedules:

Example 6.17
Consider again Slide 253.

T1 computes the sum of the population of all accounts in Frankfurt – reading all these tuples.
Thus, at the beginning it locks all (existing) tuples. T2 adds a new account and adapts the
total.

The schedule given on Slide 253 is still possible. ✷

Solution: Locking of complete tables, key areas, depending on predicates, or indexes.

Consequence: if the set of database objects changes dynamically, a conflict-based
serializability test is not sufficient.

310

LOCKING IN THE SQL2-STANDARD

Serializability is enforced as follows:

• every transaction does only see updates by committed transactions.

• no value that has been read/written by T can be changed by any other transaction before
committing/aborting T .
That means, “locks” are released only after EOT (strict 2-Phase Locking).

• if T has read a set of tuples defined by some search criterion, this set cannot be changed
until T is committed or aborted. (this excludes the phantom-problem)

311

6.7 Safety: Error Recovery

What (more or less dangerous) errors can happen to a database system?

• Transaction errors
local, application-semantical error situations

– error situation in the application program

– user-initiated abort of transaction

– violation of system restrictions (authentication etc)

– resolving of a deadlock by aborting a transaction.

• System errors
runtime environment crashes completely

– hardware errors (main memory, processor)

– faulty values in system tables that cause a software crash

• Media crashes
database backend crashes
crash of secondary memory (disk head errors ...)

Assumption: Transactions satisfy strict 2PL (⇒ no cascading rollback).

312

“SIMPLE” ROLLBACK

• the transaction manager decides to rollback a running transaction,

• requires to undo all effects of the database

• (recall that strict 2PL is assumed, which avoids dirty reads),

• requires for each transaction a list of what it did.

• these lists could be kept separately for each transaction, or altogether in a “database log”
(which will prove useful also in more severe error situations)

313

DATABASE LOG

The database system maintains a log (also called “journal”) where all changes in the
database and all state changes of transactions (BOT/EOT) are recorded.

Entries (sequential):

(1) at begin of transaction: (T, begin)

(2) if a transaction T executes WX:

(T , X , Xold , Xnew)

value of X written by T (after image)

value of X before WX (before image)

(3) at commit: (T, commit)

(4) at abort: (T, abort)

314

TRANSACTION ROLLBACK WITH A DATABASE LOG

Consider the following “money transfer” transaction T1 which additionally sends a
confirmation e-mail to A.

T1 = R1A(x), x = x−100, W1A(x), R1B(y), y = y+100, W1B(y), R1C(m), send mail to m.

Given a0 = 1000, B0 = 2000, and assume that the sending of the mail fails, the log looks as
follows:

. . . (T1, begin) . . . (T1, A, 1000, 900) . . . (T1, B, 2000, 2100) . . .

Now, execution of T1 fails when sending the mail.

Scanning the log backwards for entries on T1: set B back to 2000, set A back to 1000, stop
going backwards when (T1, begin) is reached.

(preferable: have an index on the log for each active transaction)

315

SYSTEM ERRORS: REDO- AND UNDO-SITUATIONS

T4

T3

T2

T1

✲

TimeSystem error

redo-

Situation

undo-
Situation

• redo-Situation:
A transaction has committed, and an error occurs.

• undo-Situation:
A transaction already writes to the database before committing. During execution, an
error occurs.

316

DB SERVER ARCHITECTURE: SECONDARY STORAGE AND CACHE

runtime server system: accessed by user queries/updates

• parser: translates into algebra, determines the required relations + indexes

• file manager: determines the file/page where the requested data is stored

• buffer/cache manager: provides relevant data in the cache

• query/update processing: uses only the cache

Cache (main memory): pagewise organized
• Accessed pages are fetched into the cache

• pages are also changed in the cache

• and written to the database later ...

Secondary Storage (Harddisk): pagewise organized
• data pages with tuples

• index pages with tree indexes
(see later)

• database log etc. (see later)

x

x

x

317

CACHE VS. MATERIALIZATION IN SECONDARY MEMORY

• operations read and write to cache

• contents of the cache is written (“materialized”) in secondary storage at “unknown”
timepoints

• if a page is moved out from the cache, its modifications are materialized

• write immediate: updates are immediately written to the DB:
“simple” power failure cannot lead to redo situations; aborted transactions and power
failures require to undo materialized updates in the DB.

• write to DB (at latest) at commit time.
then, “simple” power failure can still not lead to redo situations

• undo-avoiding:
write (“materialize”) updates to the database only (at or) after committing.

– then, aborted transactions are only concerned with the cache
(recall that strict 2PL is assumed which prohibits dirty reads)

– any power failure ore media crash cannot lead to undo situations
(only committed data in DB)

318

Example 6.18
(write-immediate, no undo-avoiding)

T1: BOT LA RA WA CO UA

T2: BOT LB RB LA RA WB CO UA UB

T3: BOT LC RC WC

Buffers:

T1: A : f1(a0)

T2: B : f2(f1(a0), b0)

T3: C : f3(c0)

Database:

A: A0 f1(A0)

B: B0 f2(f1(a0), b0)

C: c0 f3(c0)

Log:
(T1, begin), (T2, begin), (T1, A, a0, f1(a0)), (T1, CO), (T2, B, b0, f2(f1(a0), b0)),

(T3, begin), (T2, CO), (T3, C, c0, f3(c0)) ✷

319

Transaction Errors

Consider a transaction T that is aborted before reaching its COMMIT phase.

If undo-avoiding is used, no error handling is required (simply discard its log entries),

Otherwise, process log file backwards up to (T, begin) and materialize for every entry
(T,X,Xold, Xnew) the (before-)value Xold for X in the database.

(Recall that due to strict 2PL, no other transaction could read values that have been written by
T)

320

System Errors

Restart-Algorithm (without savepoints, for strict 2PL)

• redone := ∅ and undone := ∅.

• process the logfile backwards until end, or redone∪ undone contains all database objects.

For every entry (T,X,Xold, Xnew):

If X 6∈ redone ∪ undone:

– If the logfile contains (T, commit) (then redo), then write Xnew into the database and
set redone := redone ∪ {X}.

– Otherwise (undo) write Xold into the database and set undone := undone ∪ {X}.
(“undo once” only correct for strict 2PL!)

If undo-avoiding is used, no undo is required.

321

Example 6.19
Consider again Example 6.18.

(write-immediate, no undo-avoiding) Sys.error state after restart

T1: BOT LA RA WA CO UA

T2: BOT LB RB LA RA WB CO UA UB

T3: BOT LC RC WC

Buffers:

T1: A : f1(a0)

T2: B : f2(f1(a0), b0)

T3: C : f3(c0)

Database:

A: A0 f1(A0) f1(A0)

B: B0 f2(f1(a0), b0) f2(f1(a0), b0)

C: c0 f3(c0) c0

Log:
(T1, begin), (T2, begin), (T1, A, a0, f1(a0)), (T1, CO), (T2, B, b0, f2(f1(a0), b0)),

(T3, begin), (T2, CO), (T3, C, c0, f3(c0)) ✷

322

Logging Requirements

Log granularity:

the log-granularity must be finer than (or the same as) the lock granularity. Otherwise, redo or
undo can also delete effects of other transactions than intended.

Example 6.20
Assume locking at the tuple level, and logging at the relation level, and two transactions:

T1 : . . . , insert(p(1)), . . . , eot
T2 : . . . , insert(p(2)), . . . , eot

and the Schedule BOT (T1), . . . , T1 : Lp(1), T1 : insert(p(1)), BOT (T2), T2 : Lp(2), T2 :

insert(p(2)), commit(T2), . . . , abort(T1)

The resulting log (initial state of p is p0) is

(T1, begin), (T1, p, p0, p0 ∪ {1}), (T2, begin), (T2, p, p0 ∪ {1}, p0 ∪ {1} ∪ {2}), (T2, commit)

Then the undo operation of T1 will erase the result of T2 by resetting p to p0. ✷

Write-ahead:

before a write action is materialized in the database, it must be materialized in the log file
(materialized means that it must actually be written to the DB, not only to a buffer – which
could be lost)

323

Savepoints

... processing the log backwards ...

until the most recent savepoint.

Generation of a Savepoint

• Do not begin any transaction, and wait for all transactions to finish (COMMIT or ABORT).

• Materialize all changes in the database (force write caches).

• write (checkpoint) to the logfile

324

Media Crash

Solution: Redundancy

Strategy 1: keep a complete copy of the database (incl log)

Probability that both are destroyed at the same time is low (keep them in different
computers in different buildings ...)

Writing of a tuple to the database means to write it also in the copy. Copy is written only
after write to original is confirmed to be successful (otherwise e.g. an electrical
breakdown kills both).

Strategy 2: periodical generation of an archive database (dump).

After generation of the dump, (archive) is written to the logfile.

In case of a media crash, restart as follows:

• Load the dump.

• apply restart-algorithm only wrt. redo of completed (committed) transactions back to
the (archive) entry.

325

