
Chapter 7
Design Theory of the Relational
Model

Goal: a relational schema that suitably represents an excerpt of the real world.

• Real world implies integrity constraints (we have seen e.g. keys and referential integrity
as relational concepts)

• Base of such concepts: data dependencies

• Representation must cope with these dependencies (from this design, keys are obtained,
and referential integrity constraints).

326

DESIGN STEPS

Real World

ER-schema

set of (preliminary) relation schemata,
set of dependencies

The more exact the ER model,
the better the preliminary rela-
tional schema.

equivalent set of “good” relation schemata

Application Analysis

Transformation

relational design

327

MOTIVATION

Example 7.1
Consider the following situation: a supplier has contracts with several customers to deliver
products regularly. For each product, the number of delivered items and the price is relevant.

Pizza-Service

Name Address Product Number Price

Meier Göttingen Pizza 10 5.00

Meier Göttingen Lasagne 15 6.00

Meier Göttingen Salad 20 3.00

Müller Kassel Pizza 12 5.00

Müller Kassel Salad 15 3.00

• Redundancy

• caused problems:

(1) anomalies when updating or inserting (potential inconsistencies),

(3) anomalies when deleting (delete Meier → information about price of Lasagne is lost)

328

Example 7.1 (Continued)
Refined Schema:

Customer

Name Address

Meier Göttingen

Müller Kassel

Product

Product Price

Pizza 5.00

Lasagne 6.00

Salad 3.00

Shipment′

Name Product Number

Meier Pizza 10

Meier Lasagne 15

Meier Salad 20

Müller Pizza 12

Müller Salad 15

is the refined schema “better”?

• is it equivalent?

• anomalies removed? ✷

329

REQUIRED NOTIONS

1. Analysis of relevant dependencies

2. criterion when to decompose a relation schema (and when a decomposition is equivalent)
(based on (1))

3. measure for “quality” of a schema
(in terms of (1))

330

7.1 Functional Dependencies

• Data dependencies that describe a functional relationship.

Let V̄ a set of attributes and r ∈ Rel(V̄), X̄, Ȳ ⊆ V̄ .
r satisfies the functional dependency (FD) X̄ → Ȳ if for all t, s ∈ r,

t[X̄] = s[X̄] ⇒ t[Ȳ] = s[Ȳ] .

For Ȳ ⊆ X̄, X̄ → Ȳ is a trivial dependency (satisfied by every relation r ∈ Rel(V̄)).

Refined Definition of “Relation Schema”

A relation schema R(X̄,ΣX̄) consists of a name (here, R) and a finite set
X̄ = {A1, . . . , Am}, m ≥ 1 of attributes:

• X̄ is the format of the schema.

• ΣX̄ is a set of functional dependencies over X̄.

A relation r ∈ Rel(X̄) is an instance of R if it satisfies all dependencies in ΣX̄ .
The set of all instances of R is denoted by Sat(X̄,ΣX̄).

331

Example 7.2
Consider again Example 7.1.

The given instance is in Sat(X̄,ΣX̄) for the following set ΣX̄ of FDs:

Name → Address

Product → Price

(Name, Product) → Number

“Intuitive” ER-model of the problem:

Customer

AddressName

Product

NamePrice

buys

Number

✷

332

7.1.1 Decomposition Based on Functional Dependencies

• Does a “good” ER-model already guarantee all desirable properties of the relational
model?

NO
(at least not completely - The more exact the ER model, the better the preliminary
relational schema)

• is a formal dependency analysis necessary?

YES
• theory: based on normal forms of relational schemata

333

ANALYSIS OF ENTITY SETS

Example 7.3 (FDs of entity attributes)
Consider a staff database in a university. Persons (professors and lecturers) have names,
ranks, and salaries.

Person

name

rank

salary

Person

Name Rank Salary

G full prof. 5000

T full prof. 5000

S associate prof. 4000

W assistant 3000

P assistant 3000

There is a functional dependency Rank → Salary.

Refined schema: Person(Name, Rank)

SalaryTable(Rank, Salary)

✷

334

ANALYSIS OF RELATIONSHIP SETS

Example 7.4 (FDs of ternary relationships)
Students attend courses that are given by lecturers.

Student attends Course

Lecturer

Name Name

Name

attends

Student Course Lecturer

Stud1 Telematics Ho

Stud2 Telematics Ho

Stud2 Mobile Comm Ho

Stud3 Mobile Comm Ho

Stud3 Databases WM

Stud4 Databases WM

Stud1 Databases WM

There is a functional dependency Course → Lecturer.

Refined schema: reads(Course, Lecturer)

attends’(Student, Course)

✷

335

7.1.2 Functional Dependency Theory

Let R(V̄ ,F) a relation schema where X̄, Ȳ ⊆ V̄ , and F is a set of functional dependencies
over V̄ .
Definition 7.1

• F implies a functional dependency X̄ → Ȳ , written as F |= X̄ → Ȳ , if and only if every
relation r ∈ Sat(V̄ ,F) satisfies X̄ → Ȳ .

• F+ = {X̄ → Ȳ | F |= X̄ → Ȳ } is the closure of F . ✷

Definition 7.2
Let V̄ = {A1 . . . An}. X̄ is a key of V̄ (wrt. F) if and only if

• X̄ → A1 . . . An ∈ F+,

• Ȳ (X̄ ⇒ Ȳ → A1 . . . An /∈ F+.

For a key X̄, each Ȳ ⊇ X̄ is a superkey. ✷

For an attribute A such that A ∈ X̄ for any key X̄, A is a key attribute. If there is no key X̄

such that A ∈ X̄, then A is a non-key attribute.

336

CLOSURE OF FDS

Problem: How to decide whether X̄ → Ȳ ∈ F+? (Membership Test)

The test is based on the Armstrong-Axioms:

Let F a set of FDs over V̄ and r ∈ Sat(V̄ ,F).

(A1) Reflexivity: If Ȳ ⊆ X̄ ⊆ V̄ , then r satisfies X̄ → Ȳ .

(A2) Augmentation: If X̄ → Ȳ ∈ F and Z̄ ⊆ V̄ , then r satisfies XZ → Y Z.

(A3) Transitivity: If X̄ → Ȳ and Ȳ → Z̄ ∈ F , then r satisfies X̄ → Z̄.

The Armstrong-Axioms can be used as inference rules for FDs.

Theorem 7.1
The Armstrong-Axioms are correct, i.e., all derived FDs are in F+, and they are complete,
i.e., all FDs in F+ can be derived. ✷

337

CLOSURE OF FDS (CONT’D)

Armstrong Axioms can especially be used for searching which attributes depend on a given
X̄ ⊆ V .

Definition 7.3
For X̄ ⊆ V̄ , X̄+ is the set of all A ∈ V̄ such that X̄ → A can be derived by the Armstrong
axioms. X̄+ is called the (Attribute-)closure of X̄ (wrt. F). ✷

Exercise 7.1
Consider a relation schema R(V̄ ,F) such that K̄ is a key. What is K̄+? ✷

338

Proof of Theorem 7.1: correctness is obvious.
Completeness: it has to be shown that if X̄ → Ȳ ∈ F+, then X̄ → Ȳ can be derived by
(A1)–(A3) from F .

It will be shown: if X̄ → Ȳ is not derivable by (A1)–(A3), then X̄ → Ȳ 6∈ F+, i.e., there is an
r ∈ Sat(V̄ ,F) that does not satisfy X̄ → Ȳ .

Assume X̄ → Ȳ cannot be derived. Consider a relation r as below:

1 1 . . . 1 1 1 . . . 1

1 1 . . . 1︸ ︷︷ ︸ 0 0 . . . 0︸ ︷︷ ︸
attributes in X̄+ all other attributes

(i) First it will be shown that r satisfies F :
Assume that there is a Z̄ → W̄ ∈ F , such that r does not satisfy Z̄ → W̄ . This is only
possible if Z̄ ⊆ X̄+ and W 6⊆ X̄+. Since Z̄ ⊆ X̄+, there is X̄ → Z̄ and Z̄ → W , and thus
W ⊆ X̄+, a contradiction.

(ii) Next, it will be shown that r does not satisfy X̄ → Ȳ :
For any X̄ → Ȳ that is satisfied by r, Ȳ ⊆ X̄+. This would mean that X̄ → Ȳ can be
derived from (A1)–(A3).

339

MEMBERSHIP PROBLEM

Check whether X̄ → Ȳ ∈ F+?

Variant 1 :
Compute F+ from F using (A1)–(A3) until either X̄ → Ȳ is derived, or the process stops.
Then, F+, and X̄ → Ȳ 6∈ F+.

This algorithm is not efficient, since it has (systematically applied) at least the time complexity
O(2||F||).

Example 7.5
Consider V̄ = {A,B1, . . . , Bn, C,D} with F = {A → B1, . . . , A → Bn}. Then, A → Ȳ ∈ F+ for
all Ȳ ⊆ {B1, . . . , Bn}. Thus, computation of F needs to compute 2n items (before a negative
answer for any other FD – e.g. the question whether C → D holds – can be stated). ✷

340

Membership Problem (Cont’d)

Variant 2 :
Goal-oriented approach for X̄ → Ȳ ∈ F+:

Compute X̄+ and check if Ȳ ⊆ X̄+.

• start with X → X (A1 - Reflexivity)

• (A2) allows X̄ → Ȳ ∈ F ⇒ XX → XY ∈ F+ which is equivalent to X̄ → XY ∈ F+

• for any Z̄ ⊃ X̄ and X̄ → XY ∈ F+, (A2) allows to conclude Z̄ → ZY (A2∗)

• “collect” X̄+ in this way: derive X̄ → XY1, then XY1 → XY2 by (A2∗) and apply (A3 -
transitivity) to them,

• until X̄ → Z̄ ∈ F+ for Ȳ ⊂ Z̄, then derive X̄ → Ȳ ∈ F+ by (A1).

341

Example 7.6
F = {AB → E,BE → I, E → G,GI → H}, check if AB → GH ∈ F+ ?

X → Y ∈ F and derive ...

(A1) AB → AB

(A2∗) AB → E AB → ABE

(A2∗) BE → I ABE → ABEI

(A2∗) E → G ABEI → ABEIG

(A2∗) GI → H ABEIG → ABEIGH

(A3) transitivity: AB → ABEIGH

final step with (A1): AB → GH ✷

342

Membership Problem (Cont’d)

• consider each (A2∗) + (A3) step as one:

X̄+-Algorithm:

result := X̄; /* (A1) */
WHILE (changes to result) DO
FOR each W̄ → Z̄ ∈ F DO /* (A2∗) + (A3) */

IF (W̄ ⊆ result) THEN result := result ∪ Z̄ ;
end;

check if Ȳ ⊆ result /* (A1) */;

Theorem 7.2
The X̄+-algorithm computes X̄+ and terminates. Its time complexity is O((|F| · |V |)2).
There is an optimized variant in O(|F| · |V |). ✷

Example 7.7
Apply the X̄+-algorithm to Example 7.6 (same steps). ✷

343

AN EQUIVALENT SET OF RULES

Lemma 7.1
Consider a relation schema R(V̄ ,F) such that A ∈ V̄ and X̄, Ȳ , Z̄, W̄ ⊆ V̄ , and F is a set of
functional dependencies over V̄ , and r ∈ Sat(V̄ ,F). Then:

(A4) Union: If X̄ → Ȳ and X̄ → Z̄ ∈ F , then r satisfies X̄ → Y Z.

(A5) Pseudo-transitivity: If X̄ → Ȳ and WY → Z̄ ∈ F , then r satisfies XW → Z̄.

(A6) Decomposition: If X̄ → Ȳ ∈ F and Z̄ ⊆ Ȳ , then r satisfies X̄ → Z̄.

(A7) Reflexivity: r satisfies X̄ → X̄

(A8) Accumulation: If X̄ → Y Z and Z̄ → AW ∈ F , then r satisfies X̄ → Y ZA. ✷

Lemma 7.2
The rule sets {(A1), (A2), (A3)} and {(A6), (A7), (A8)} are equivalent, i.e., for given F , the
same set of FDs can be derived. ✷

• (A8) covers the combination of (A2∗) and (A3) (consider W̄ = ∅).

344

Example 7.8
F = {AB → E,BE → I, E → G,GI → H}, check if AB → GH ∈ F+ ?

Derivation by Intermediate result X̄i

(A7)–(A8) of the X̄+-algorithm

(A7) AB → AB X̄0 = {A,B}
(A8) [AB → E]

AB → ABE X̄1 = {A,B,E}
(A8) [BE → I]

AB → ABEI X̄2 = {A,B,E, I}
(A8) [E → G]

AB → ABEIG X̄3 = {A,B,E, I,G}
(A8) [GI → H]

AB → ABEIGH X̄4 = {A,B,E, I,G,H}
final step with (A6):

(A6) AB → GH ✷

345

DETERMINING A KEY

Consider a relation schema R = (V̄ ,F).

• The X̄+-algorithm allows for determining a key of R in time O(|F| |V̄ |2):
Start with the superkey V̄ and try to delete attributes as long as the closure of the
remaining attributes is still the whole V̄ . If no more attributes can be deleted, a key is
found.

• In the general case, it is not possible to determine all keys of a relation schema efficiently.
Note that the problem “is there a key with at most k attributes?” is NP-complete.

346

ASIDE: UNIQUE KEYS

Theorem 7.3
Let F = {X̄1 → Ȳ1, . . . , X̄p → Ȳp}.
Let Z̄i = Ȳi \ X̄i for 1 ≤ i ≤ p.

R(V̄) has a unique key if and only if V̄ \ (Z̄1 ∪ . . . ∪ Z̄p) is a superkey.
(note that K̄ is a superkey if K̄+ = V̄).
(Proof: next slide) ✷

Note:

• Z̄1 ∪ . . . ∪ Z̄p contains those attributes that are fd from any other attribute.

• V̄ \ (Z̄1 ∪ . . . ∪ Z̄p) contains those attributes that are not fd from any other attribute.

• V̄ \ (Z̄1 ∪ . . . ∪ Z̄p) is subset of all keys of a relation.

Example 7.9
Consider the relation Country(name,code,population, area) with FDs
name→ code,population,area and code→ name,population,area.
Here, name and code are keys.
V̄ \ (...) = ∅ ✷

347

ASIDE: UNIQUE KEYS (CONT’D)

Proof of Theorem 7.3:

“⇒” Assume K̄ to be the unique key of R. Then, K̄ is contained in every superkey. For each
1 ≤ i ≤ p, V̄ \ Z̄i is a superkey (since Z̄i is determined by X̄i).

Thus, K̄ ⊆ ∩p
i=1(V̄ \ Z̄i). The right side is equivalent to V̄ \ (Z̄1 ∪ . . . ∪ Z̄p). Thus,

V̄ \ (Z̄1 ∪ . . . ∪ Z̄p) is a superkey (of K̄).

“⇐” Assume K̄ = V̄ \ (Z̄1 ∪ . . . ∪ Z̄p) a superkey. It will be shown that K̄ is contained in every
superkey, and thus it is the only key. Suppose a superkey L̄ such that there is an attribute
A ∈ K̄ \ L̄. Then, A 6∈ L̄+ (since it is not in any of the Z̄i). Thus, L is not a superkey
(since L̄+ (V̄) – contradiction.

348

SETS OF FDS

Consider sets F ,G of functional dependencies. F ,G are equivalent if and only if F+ = G+.

Definition 7.4
F is minimal if and only if

1. For every X̄ → Ȳ ∈ F , Ȳ consists of a single attribute,

2. For every X̄ → A ∈ F , F \ {X̄ → A} is not equivalent to F ,

3. If X̄ → A ∈ F and Z̄ ⊂ X̄, then F \ {X̄ → A} ∪ {Z̄ → A} is not equivalent to F . ✷

Theorem 7.4
For each set F of functional dependencies, there is an equivalent minimal set Fmin of
functional dependencies.
(Note: Fmin is not necessarily unique). ✷

Example 7.10
Consider again Example 7.9:
{name→ {code}, name→ {population}, name→ {area}, code→{name}}
and {code→ {name}, code→ {population}, code→ {area}, name→{code}}
are minimal. ✷

349

MINIMAL SETS OF FDS

• Fmin can be computed by the X̄+-algorithm (without computing F+) in polynomial time.

Consider a schema R(V̄ ,F) with |V̄ | = n and |F| = f .

1. Decompose all X → Y ∈ F such that each right side consists of a single attribute; get F ′

with |F ′| ≤ nf in O(f · n) steps.

2. Delete all ϕ ∈ F ′ that follow from the others (iteratively), using the X+ algorithm.
Each application of X+ requires O(f · n) steps, thus, altogether O(f2 · n2).

3. Delete in each remaining FD {x1 . . . , xn} → y stepwise as many attributes on the left side
as possible. For each step, check, whether y is still in the remaining {x1 . . . , xk}+.
The X+-algorithm is applied |F ′| · n = O(f · n2) times, thus, this step is in O(f2 · n3).

4. The algorithm is in O(f2 · n3), i.e., polynomial.

350

7.2 Decomposition of Relation Schemata

In Example 7.1 (Slide 328), a relation has been decomposed for yielding a better behavior.

Definition 7.5
• Let V̄ a set of attributes. Then, ρ = {X̄1, . . . , X̄n} s.t. X̄1 ∪ . . . ∪ X̄n = V̄ and for each i,
X̄i ⊆ V̄ is a decomposition of V̄ . ✷

Example 7.11
Consider again Example 7.1. There, V̄ = {Name,Address,Product,Number,Price}.

E.g., ρ = {{Name,Address}, {Product,Price}, {Name,Product,Number}}. is a
decomposition. ✷

Lemma 7.3
Consider a relation r ∈ Rel(V̄) and a decomposition ρ = {X̄1, . . . , X̄k} of V̄ .

Then,

r ⊆ π[X̄1](r) ⊲⊳ . . . ⊲⊳ π[X̄k](r) . ✷

351

PROPERTIES OF DECOMPOSITIONS

Losslessness: The complete tuples must be reconstructable by joining the decomposed
relations without getting additional tuples that have not been there originally.

Example 7.12
Consider again Example 7.4, now with a decomposition into hears(Student,Lecturer) and
attends’(Student, Course).

Then, the join hears ⊲⊳ attends’ yields a tuple (DStud1,Databases,Ho). ✷

Definition 7.6
Consider a relation schema R(V̄ ,F) and a decomposition ρ = {X̄1, . . . , X̄n} of R.

ρ is lossless if and only if for every relation r ∈ Sat(V̄ ,F),

r = π[X̄1](r) ⊲⊳ . . . ⊲⊳ π[X̄k](r) . ✷

352

PROPERTIES OF DECOMPOSITIONS (CONT’D)

dependency-preservation: the dependencies can be tested using the decomposed tables
only, i.e., without having to recompute the join.

Definition 7.7
Consider a relation schema R(V̄ ,F) and a decomposition ρ = {X̄1, . . . , X̄n} of R.

π[Z](F) = {X → Y ∈ F+ | XY ⊆ Z} is the projection of F to Z.

ρ is dependency-preserving if and only if for all i,
n⋃

i=1

π[X̄i](F) ≡ F .
✷

Dependency-preservation means that FDs can be distributed over the decomposition
without losing anything:
If the projections of F+ are asserted, the (joined) database contents satisfies F .

We will first discuss losslessness.

353

7.2.1 Lossless Decompositions

• The problem is not to lose tuples by (wrong) decompositions, but to lose “information”
about relationships.

Example 7.13
Consider again Examples 7.4 and 7.12.

1. attends = π[Course, Lecturer](attends)︸ ︷︷ ︸
reads

⊲⊳ π[Student,Course](attends)︸ ︷︷ ︸
attends′

2. attends (π[Student, Lecturer](attends)︸ ︷︷ ︸
hears

⊲⊳ π[Student,Course](attends)︸ ︷︷ ︸
attends′

(DStud1,Databases,Ho) ∈ hears ⊲⊳ attends’. ✷

354

TEST FOR LOSSLESSNESS (CHASE-ALGORITHM FOR FDS)

Input: a relation schema R(V̄ ,F), where V̄ = {A1, . . . , An}, ρ = {X̄1, . . . , X̄k}.

Algorithm: (Aho, Beeri, Ullman, TODS 1979)

Idea: take a tuple (a1, . . . , an), decompose it according to ρ. Create a “test table” that
represents the requirements of a tuple (a1, . . . , an) in the re-join of the decomposed tables.
Add the knowledge from the FDs about the attribute values of this tuple. The goal is to show
that this tuple must have been already present in the original table.

Construct a table T with n columns and k rows.
Column j stands for Aj , row i for X̄i as follows:

• T(i,j) = aj if Aj ∈ X̄i,

• otherwise T(i,j) = bij (“any value”).

(see next slide)

355

Chase-Algorithm for FDs (Cont’d)

As long as T changes, do the following:

Consider a FD X̄ → Ȳ ∈ F . If there are rows z1, z2 ∈ T which coincide for all X̄-columns, but
not in all Ȳ -columns, then make their Ȳ -values the same:

• For each Ȳ -column j:

• if one of the symbols is aj , then replace every occurrence of the other symbol globally by
aj .

• if both symbols are of the form bij, then replace arbitrarily one of them globally by the
other.

Note: The algorithm corresponds to enforcing the FDs.
(since they are known to hold in T , this constrains the occurrences of other values)

Result: ρ is lossless if and only if (a1, . . . , an) ∈ T .

356

Example 7.14 (Chase)
V̄ = ABCDE, ρ = (AD,AB,BE,CDE,AE);
F = {A → B,B → D,DE → C,E → A}

A B C D E

from AD: a1 b12 b13 a4 b15

from AB: a1 a2 b23 b24 b25

from BE: b31 a2 b33 b34 a5

from CDE: b41 b42 a3 a4 a5

from AE: a1 b52 b53 b54 a5

chase−→

A B C D E

a1 a2 b13 a4 b15

a1 a2 b23 a4 b25

a1 a2 a3 a4 a5

a1 b42 a3 a4 a5

a1 b52 b53 b54 a5

The process is finished when the following table is reached:

A B C D E

a1 a2 a3 a4 b15

a1 a2 a3 a4 b25

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

Note that only for columns that
do not occur on the right side of
a FD, the bs remain.

✷

357

Theorem 7.5
The above algorithm for testing losslessness is correct. ✷

Proof:

Notation:

• for a decomposition ρ = {X̄1, . . . , X̄k} of V̄ and a relation r, the re-join of the
decomposed tables is denoted by mρ(r) = ⊲⊳ki=1 π[X̄i](r).

• T0 and T ∗ denote the table before and after execution of the algorithm.

The algorithm terminates since the number of different symbols decreases with every step.

(A) It has to be shown that if ρ is lossless, (a1, . . . , an) ∈ T ∗.

Due to the construction of T0, each π[X̄i](T0) contains a row that consists only of ais. Thus,
(a1, . . . , an) ∈ mρ(T0).

This property is preserved by the chase steps, thus (a1, . . . , an) ∈ mρ(T
∗). The chase

process also guarantees that T ∗ ∈ Sat(V̄ ,F). From the assumption that ρ is lossless,
T ∗ = mρ(T

∗) and (a1, . . . , an) ∈ T ∗.

358

(B) (uses Relational Calculus)

It will be shown that if (a1, . . . , an) ∈ T ∗, ρ is lossless.

Consider relations r over R(V̄) (as structures). Consider the formula of the calculus

F0 = (∃b11) . . . (∃bkn)(R(w1) ∧ . . . ∧R(wk))

where wi is the i-th row of T0 and all ai and bjk’s are interpreted as variables. The free
variables in F0 are a1, . . . , an. Note that every member R(wi) of the conjunction in F0

corresponds to a projection to X̄i. Then,

mρ(r) = answers(F0(a1, . . . an)) .

Consider only relations r ∈ Sat(V̄ ,F). Since r satisfies F ,

F0(a1, . . . an) ≡F F1(a1, . . . an) ≡F . . . ≡ F ∗(a1, . . . an)

where each Fi corresponds to the table after i chase steps. For given r, the answer set to F ∗

is the same as the answer set to F0.

Since F ∗(a1, . . . an) is of the form (∃b11) . . . (∃bkm)(R(a1, . . . , an) ∧ . . .) ,
its answer set is a subset (or equal) of r.

Altogether, mρ(r) ⊆ r. Since mρ(r) ⊇ r by Lemma 7.3, mρ(r) = r, i.e., ρ is lossless.

359

Corollary 7.1 (Decomposition into two relations)
Consider a set V̄ of attributes, a set F of functional dependencies, and a decomposition
ρ = {X̄1, X̄2} of V̄ . ρ is lossless if and only if

(X̄1 ∩ X̄2) → (X̄1 \ X̄2) ∈ F+, or (X̄1 ∩ X̄2) → (X̄2 \ X̄1) ∈ F+ .
✷

Proof:
The table T for ρ is

X̄1 ∩ X̄2 X̄1 \ X̄2 X̄2 \ X̄1

X̄1 a . . . a a . . . a b . . . b

X̄2 a . . . a b . . . b a . . . a

1. Assume (a1, . . . , an) ∈ T ∗. Consider an attribute A whose column contains a b. If the
algorithm exchanges it by an a, then A ∈ (X̄1 ∩ X̄2)

+. Due to the assumption that
(a1, . . . , an) ∈ T ∗, there is one line where this happens for all attributes – thus all these
attributes are in (X̄1 ∩ X̄2)

+.

2. Assume (w.l.o.g.) that (X̄1 ∩ X̄2) → (X̄1 \ X̄2) ∈ F+, i.e., X̄1 \ X̄2 ⊆ (X̄1 ∩ X̄2)
+.

Consider the steps for deriving this by the X̄+-algorithm. For each such step there is a
corresponding chase-step. Thus, the chase replaces each b of an attribute in X̄1 \ X̄2 by
an a, leading to (a1, . . . , an) ∈ T ∗.

360

Example 7.15
Consider again Examples 7.4, 7.12 and 7.13 whith the schema

attends((Student, Course, Lecturer), {Course → Lecturer})

• ρ1 = {{Course, Lecturer}, {Student,Course}} is lossless.

• ρ2 = {{Student, Lecturer}, {Student,Course}} is not lossless. ✷

General conclusion for ternary relations:

• for any (useful) decomposition into two binary relations, there is one attribute A that is
contained in both relations.

• the decomposition is lossless if at least one of the other attributes is functionally
dependent only on A.

In the above example, the functional dependency Course → Lecturer which made the
decomposition possible.

361

7.2.2 Dependency Preservation

Example 7.16
Consider again Examples 7.1 and 7.11 with the schema

Pizza-Service({Name,Address,Product,Number,Price},
{Name → Address, Product → Price, (Name,Product) → Number})

and the decomposition

ρ = {{Name,Address}, {Product,Price}, {Name,Product,Number}} .

Recall that π[Z](F) = {X → Y ∈ F+ | XY ⊆ Z}

π[Name,Address](F) ⊇ {Name → Address}
π[Product,Price](F) ⊇ {Product → Price}
π[Name, Product, Number](F) ⊇ {(Name,Product) → Number

So, all FD’s immediately survive. ✷

362

Another, abstract Example

Example 7.17
V = {A,B,C,D}, ρ = {AB,BC}
F = {A → B,B → C,C → A}

ρ is dependency-preserving (check whether C → A is preserved).

Recall again that π[Z](F) = {X → Y ∈ F+ | XY ⊆ Z}

(F+ contains A → ABC, B → ABC, C → ABC)

π[AB](F) ⊇ {A → B,B → A}
π[BC](F) ⊇ {B → C,C → B}
C → A ∈ (π[AB](F) ∪ π[BC](F))

+
✷

363

DEPENDENCY PRESERVATION

There are lossless decompositions that are not dependency-preserving:

Example 7.18
Consider R = (V̄ ,F), where V̄ = {City, Address, Zip}, and
F = {(City,Address) → Zip, Zip → City}.

The decomposition R1(Address, Zip) and R2(City, Zip) is lossless since
(R1 ∩R2) → (R2 \R1) ∈ F , but is not dependency-preserving.

(note that the keys of R are (Address, Zip) and (City, Address).)

R City Address Zip

FR Herdern 79106

FR Flughafen 79110

FR Mooswald 79110

S Flughafen 70629

R1 Address Zip

Herdern 79106

Flughafen 79110

Mooswald 79110

Flughafen 70629

R2 City Zip

FR 79106

FR 79110

S 70629

Insert (FR,Herdern,79100) and check the FDs:
The original FD (City,Address) → Zip is not satisfied. ✷

364

... and now to a systematic characterization:

• some properties have been identified that should hold for a decomposition,

• algorithms have been giving for testing them;

• is it possible to express properties of such decompositions based on schema information?

• how to find such decompositions?

365

7.3 Normal Forms based on FDs

Task:

Consider a schema R = (V̄ ,F). Find a decomposition ρ = (X̄1, . . . , X̄n) of R such that

1. each Ri = (X̄i, π[X̄i](F)), 1 ≤ i ≤ n is in some normal form,

2. ρ is lossless and (if possible) dependency-preserving,

3. n is minimal.

366

Non-normalized Data

Nested Relations:
Nested_Languages

Code Name Languages

D Germany German 100

CH Switzerland German 65

French 18

Italian 12
...

...
...

Non-atomic values:
Products

Code GDP Products

D 1452200 steel, coal, chemicals, machinery, vehicles

CH 158500 machinery, chemicals, watches
...

...
...

367

1ST NORMAL FORM (1NF)

Definition 7.8
A relation schema is in 1NF if and only if its attribute domains are atomic. ✷

Non-normalized relations are transformed into 1NF by expanding groups.

Note that redundancy arises (expressed by functional dependencies).

Example 7.19

Languages

Code Name Language Percent

D Germany German 100

CH Switzerland German 65

CH Switzerland French 18

CH Switzerland Italian 12
...

...
...

...

F = {Code → Name,

Name → Code,

(Code, Language) → Percent,

(Name, Language) → Percent}

✷

368

Example 7.20

Economy

Code GDP Product

D 1452200 steel

D 1452200 coal

D 1452200 chemicals

D 1452200 machinery

D 1452200 vehicles

CH 158500 machinery

CH 158500 chemicals

CH 158500 watches
...

...
...

F = {(Code,Product) → (Code, Product, GDP), Code → GDP}

Key: (Code, Product) ✷

369

2ND NORMAL FORM (2NF)

• In Example 7.20, the GDP information (e.g., (D, 1452200)) is stored redundantly.

• Problem: Code → GDP, but Code alone is not a key.

2NF forbids non-trivial FDs, where a non-key attribute A is functionally dependent on some X̄

that is a proper subset of a key. Such FDs cause the above redundancy.

Definition 7.9
A relation schema R = (V̄ ,F) is in 2NF if and only if every non-key attribute A is fully
dependent on each candidate key:

• Let K̄ be a candidate key of R, A an attribute that is not contained in any candidate key.
Then, there is no X̄ (K̄ s.t. X̄ → A ∈ F . ✷

Example 7.21
Consider again Example 7.20: Split the Economy relation into relations Economy’(Code,
GDP) and Products(Code, Product). ✷

370

2ND NORMAL FORM (CONT’D)

The above example was motivated by normalizing a multivalued attribute.

The same situation can occur when mapping a multivalued relationship inaccurately:

• non-key attributes of one of the participating entity types is mixed with the relationship.

Student Courseattends< 0, ∗ > < 4, ∗ >

Name Name room

attends

Student Course room

Alice Databases E105

Bob Databases E105

Alice Telematics E105

Carol Telematics E105

Bob Programming E203

(Student, Course) is (the only) candidate key.

F = { Course → Room,

(Student, Course) → Room }
• The table contains redundancies

• 2NF Decomposition: Separate the

relationship from the entity.

371

2ND NORMAL FORM (CONT’D)

Separate the relationship from the entity:

attends

Student Course room

Alice Databases E105

Bob Databases E105

Alice Telematics E105

Carol Telematics E105

Bob Programming E203

split

attends’

Student Course

Alice Databases

Bob Databases

Alice Telematics

Carol Telematics

Bob Programming

Course

Name room

Databases E105

Telematics E105

Programming E203

Is that all?

No. The idea is clear, but the formulation is not yet perfectly accurate.

372

... 2NF covers only FDs from keys.

Consider the following situation when mapping a multivalued, n : 1-relationship inaccurately:

Course Lecturerread_by< 1, 1 > < 1, ∗ >

Name Name phone

read_by

Course Lecturer phone

Telematics Ho 14401

Mobile Comm Ho 14401

Databases WM 14412

SSD&XML WM 14412

Course is (the only) candidate key.

F = { Course → Lecturer

Course → phone

Lecturer → phone }

• the table contains redundancies

• the table is in 2NF

• Lecturer → phone does not violate 2NF because Lecturer is not contained in any
candidate key – this case is not covered by 2NF.

373

3RD NORMAL FORM (3NF)

Definition 7.10
A relation schema R = (V̄ ,F) is in 3NF if and only if for each non-key attribute A:

• For each X̄ → A ∈ F such that A is not contained in any candidate key, X̄ contains a
candidate key. ✷

Now, all FDs for non key A must be “complete key → A”

3NF Decomposition: Split again.

Separate the relationship from the entity:

read_by

Course Lecturer phone

Telematics Ho 14401

Mobile Comm Ho 14401

Databases WM 14412

SSD&XML WM 14412

split:

read_by’

Course Lecturer

Mobile Comm Ho

Telematics Ho

Databases WM

SSD&XML WM

Lecturer

Lecturer phone

Ho 14401

WM 14412

3NF-Decomposition is always lossless and dependency-preserving.

374

NORMAL FORMS

Compare: why can the relationship and the entity be combined in in the following case?

Country Cityis_capital< 1, 1 > < 0, 1 >

name code name pop.

375

BOYCE-CODD NORMAL FORM (BCNF)

• In Example 7.19 (Languages), the name (e.g., D, Germany) is stored redundantly.
(Note that Name is a key attribute there – thus 3NF is not applicable.)

BCNF extends 3NF for key attributes:

Definition 7.11
A relation schema R = (V̄ ,F) is in BCNF if and only if for each attribute A:

• For each X̄ → A ∈ F such that A 6∈ X̄, X̄ contains a key. ✷

Example 7.22
Consider again Example 7.19: Name depends on Code, but Code does not contain a key.

Split the Languages relation into relations Country(Code,Name) and
Languages’(Code,Language,Percent).

In this case, the decomposition is lossless and dependency-preserving. ✷

376

BCNF (CONT’D)

• BCNF-Decomposition is always lossless, but not necessarily dependency-preserving.

Example 7.23
Consider again Example7.18:

R = (V̄ ,F), where V̄ = {City, Address, Zip}, and F = {(City,Address) → Zip, Zip → City}.

R is in 3NF, but not in BCNF.

The decomposition R1(Address, Zip) and R2(City,Zip) transforms it in a BCNF schema.

It has been shown that this decomposition is lossless, but not dependency-preserving. ✷

377

PROPERTIES OF BCNF AND 3NF

Theorem 7.6
If a relation schema R has exactly one key, then R is in BCNF if and only if R is in 3NF.

Proof: Obviously, BCNF implies 3NF. Assume R in 3NF and K̄ its only key. Assume a FD
X̄ → A ∈ F .

We show that X̄ → A is trivial (i.e., A ∈ X̄). Since R is in 3NF, it is sufficient to consider the
case where A is a key attribute.

(K̄ − A) ∪ X̄ is a superkey (since X̄ → A and A is part of K̄). Thus, there is a key
K̄ ′ ⊆ (K̄ −A) ∪ X̄. Since there is only a single key, K̄ = K̄ ′. Thus, since A ∈ K̄, also A ∈ K ′

– thus it must be in X̄. ✷

378

PROPERTIES OF BCNF AND 3NF (CONT’D)

Lemma 7.4
A relation schema R = (V̄ ,F) is in BCNF if and only if for each non-trivial FD X̄ → A ∈ F+,
X̄ is a superkey.

Proof:

• “if” is obvious.

• It will be shown that if X̄ → A ∈ F+ and A /∈ X̄, then X̄ → V̄ ∈ F+.

Since A ∈ X̄+ \ X̄, there is a non-trivial FD Ȳ → A ∈ F that is used by the X̄+-algorithm
for adding A to X̄+. For this, Ȳ ⊆ X̄+, i.e., X̄ → Ȳ ∈ F+.

Since R is in BCNF, Ȳ is a superkey. Since X̄ → Ȳ ∈ F+, X̄ must already be a superkey
– i.e., X̄ → V̄ ∈ F+. ✷

Corollary 7.2
A relation schema R = (V̄ ,F) is in BCNF if and only if R′ = (V̄ ,F+) is in BCNF. ✷

• Lemma 7.4 and Corollary 7.2 analogously hold for 3NF.

379

PRACTICAL ASPECTS

• BCNF can be tested in polynomial time.

Sketch: Use the X̄+-algorithm for each FD X̄ → Ȳ to check if X̄ is a superkey.

• Testing 3NF is NP-complete

– polynomially check if BCNF – if “yes”, OK

– if ”no”, the check whether A is a key attribute is exponential.

• Consider a set F of FDs over V̄ , and X̄ ⊆ V̄ .

Then, for computing π[X̄](F), only algorithms are known that are (in the worst case)
exponential in |X̄|.
Sketch: For every Ȳ ⊆ X̄, compute Ȳ + and add Ȳ → (Ȳ + ∩ X̄) to π[X̄](F)+

(no way to compute π[X̄](F) without the closure).

380

PRACTICAL ASPECTS (CONT’D)

Lemma 7.5
For a relation schema R = (V̄ ,F) s.t. there is a FD X̄ → Ȳ where X̄ ∩ Ȳ = ∅, the
decomposition ρ = (R \ Ȳ , XY) is lossless. ✷

Proof Proof: Use Corollary 7.1 (Slide 7.1):
(R \ Ȳ) ∩XY = X̄, XY \ (R \ Ȳ) = Ȳ , and thus X̄ → Ȳ . ✷

... this can now be used for an algorithm.

381

7.3.1 BCNF-Analysis: lossless, but not dependency-preserving

Input: a relation schema R = (V̄ ,F) that is not in BCNF.

Consider a FD X̄ → A ∈ F that violates the BCNF condition.

• Decomposition of V̄ : ρ = (XA, V̄ −A) (A has been stored redundantly)

• R1 = (XA, π[XA](F))

• R2 = (V̄ −A, π[V̄ −A](F)),

• check whether R1 and R2 satisfy the BCNF condition, apply algorithm recursively.

Example 7.24
Let V̄ = {C,S,J,D,P}, F = {SD → P, J → S}.

C S J D P

SD → P

S D P C S J D

J → S

J S C J D

C S J D P

J → S

J S C J D P

SD → P is not preserved. ✷

382

7.3.2 3NF-Analysis: lossless and dependency-preserving

• Sketch: BCNF – and repair.

Consider a relation schema R = (V̄ ,F) such that

• F is minimal, and

• ρ = (X̄1, . . . , X̄k) is a decomposition of V̄ such that all schemata Ri = (X̄i, π[X̄i](F)) are
in BCNF.
(possibly not dependency-preserving)

• For each such FD X̄ → A that is not preserved, extend ρ with XA; the corresponding
schema is (XA, π[XA](F)).

• The resulting decomposition is obviously lossless and additionally
dependency-preserving. Each of the new schemata is in 3NF.

Proof Sketch: Since X̄ → A ∈ F and F minimal, there is no Ȳ → A for any Ȳ ⊂ X̄. Thus, X̄
is a key for XA and all other FDs over XA are defined only over X̄. Thus, they cannot violate
the 3NF-condition (but the BCNF-condition).

383

Example 7.25
Consider again Example 7.24.

V̄ = {C,S,J,D,P}, F = {SD → P, J → S}

• The first decomposition is dependency-preserving.

• The second decomposition

C S J D P

J → S

J S C J D P

does not preserve SD → P.

The 3NF-analysis algorithm adds S D P. ✷

384

7.3.3 3NF-Synthesis: lossless and dependency-preserving

Input: relation schema R = (V̄ ,F) and Fmin.

1. Consider maximal sets of FDs from Fmin with the same left hand side. Let
{X̄ → A1, X̄ → A2, . . .} such a set.
For every set, generate a schema with the format XA1A2

2. If none of the formats from (1) contains a key of R, take any key K̄ of R and add a
schema with format K.

• The 3NF-Synthesis-Algorithm is polynomial in time.

• the resulting ρ is not necessarily minimal:

Consider V̄ = {AB} with Fmin = {A → B,B → A}. Then, ρ = (AB,BA).

• Recall that in contrast, it is NP-complete to check if a given schema is in 3NF.

385

Correctness

• Using Fmin, the generated schemata are in 3NF.

• ρ is dependency-preserving since for every X̄ → Ȳ ∈ Fmin, a format is generated that
contains XY .

• ρ is lossless since ρ contains a key of the original schema. Using this tuple, in T ∗ (cf.
Theorem 7.5) contains a row that consists of ais:

Consider the steps of the X̄+-algorithm that add – w.l.o.g. – the attributes A1, A2, . . . , Ak

from V̄ \ X̄ to X̄+. Show by induction that column of Ai in the row of X̄ is set to ai.

– i = 0: nothing to show.

– i− 1 → i: Ai is added to X̄+ due to a FD Ȳ → Ai where Ȳ ⊆ X̄ ∪ {A1, . . . , Ai−1}.
Furthermore, Y Ai ⊆ X̄ ′ for some X̄ ′ ∈ ρ (generated by step (1)) and the rows of X̄
and X̄ ′ coincide for Ȳ (only as). Then, the chase copies the ai from the row of X̄ ′ to
the row of X̄.

386

7.4 Join Dependencies and Multivalued Dependencies

Example 7.26

Consider the following Non-1NF table:

cco

Country Continents Organizations

D Europe NATO, EU, UN

TR Europe, Asia NATO, UN

R Europe, Asia UN

USA N.America UN

... expand the groups as before to 1NF ...

387

Join Dependencies and Multivalued Dependencies (Cont’d)

Example 7.26 (Continued)
the expanded table:

cco

Country Continent Organization

D Europe NATO

D Europe EU

D Europe UN

TR Europe NATO

TR Europe UN

TR Asia NATO

TR Asia UN

R Europe UN

R Asia UN

USA N.America UN

There is some redundancy ...
called multivalued dependencies
cco satisfies

• country →→ continent and

• country →→ organization.

388

Join Dependencies and Multivalued Dependencies (Cont’d)

Example 7.26 (Continued)

cco

Country Continent Organization

D Europe NATO

D Europe EU

D Europe UN

TR Europe NATO

TR Europe UN

TR Asia NATO

TR Asia UN

R Europe UN

R Asia UN

USA N.America UN

Actually, cco is a join of

encompasses

Country Cont.

D Europe

TR Europe

TR Asia

R Europe

R Asia

USA N.America

and

isMember

Country Org.

D EU

D NATO

D UN

TR UN

TR NATO

R UN

USA UN

cco = π[Country,Cont](cco) ⊲⊳ π[Country,Org](cco)

= encompasses ⊲⊳ isMember

✷

389

JOIN DEPENDENCIES (CONT’D)

Consider a set V̄ of attributes, a relation r ∈ Rel(V̄), and a decomposition ρ = {X̄1, . . . , X̄n}
of V̄ .

r satisfies the join dependency (JD) ⊲⊳ [X̄1, . . . , X̄n] if and only if

r = ⊲⊳ni=1 π[X̄i](r) .

In case that n = 2, the JD is also called a multivalued dependency (MVD), written as

X̄1 ∩ X̄2 →→ X̄1 \ X̄2, or, symmetrically X̄1 ∩ X̄2 →→ X̄2 \ X̄1 .

Note: X̄1 = (X̄1 ∩ X̄2) ∪ (X̄1 \ X̄2), and X̄2 = (X̄1 ∩ X̄2) ∪ (X̄2 \ X̄1).

390

7.4.1 4. Normal Form (4NF)

Goal: mutually independent facts should not be represented in a single relation.

Consider a relation schema R = (V̄ ,D) where D is a set of MVDs and FDs. Let D+ the
closure of D.

• for the closure D+ for MVDs see literature.

• FDs are special cases of MVDs.

• MVDs satisfy the following complement property:
If X →→ Y ∈ D+, then also X →→ (V \ (X ∪ Y)) ∈ D+.

• trivial MVDs are of the form X̄ →→ Ȳ for Ȳ ⊆ X̄, and X̄ →→ V \ X̄.

Definition 7.12
A relation schema R = (V̄ ,D) is in 4NF if and only if for every non-trivial X̄ →→ Y ∈ D+, X̄
contains a key. ✷

Example 7.27
Consider again Example 7.26. It is not in 4NF.
Decomposition is lossless and dependency-preserving. ✷

391

Exercise 7.2
Experiment with join dependencies using the following ER diagram that describes restaurants
that offer multiple choices of 2-course meals and accessoires (note that these attributes are
multivalued):

Restaurant

Name City

aperitifs

starters

1st courses 2nd courses

desserts

drinks

392

7.5 Summary

• Analogous considerations for join dependencies lead to 5NF.

• 1NF ⇐ (2NF) ⇐ 3NF ⇐ BCNF ⇐ 4NF (⇐ 5NF)
(other directions do not hold).

• 2NF is only of historical interest.

• In all cases there exists a lossless decomposition in 4NF (5NF).

• In the general case, all decompositions further than 3NF are not dependency-preserving.

393

7.6 Inclusion Dependencies

Consider sets X̄1 and X̄2 of attributes, and relations r1 ∈ Rel(X̄1) and r2 ∈ Rel(X̄2) with
Ȳ ⊆ X̄1 ∩ X̄2.

r1, r2 satisfy the inclusion dependency (ID) R1[Ȳ] ⊆ R2[Ȳ] if and only if

π[Ȳ](r1) ⊆ π[Ȳ](r2) .

394

7.7 Schema Design

1. Generate an ER-model. This means a thorough discussion of the data engineers and the
specialists of the application area.

2. Note that keys, functional dependencies, multivalued dependencies, and inclusion
dependencies belong to this stage!

Candidates can be found by data analysis, but the semantic aspect must be confirmed by
the domain specialists.

3. Transformation to a relational schema

4. Normalization to 3NF

5. Manual decomposition to 4NF

6. enhanced ER design.

395

IMPORTANCE OF A CORRECT ER-DESIGN

Example 7.28
Employees are associated (uniquely) with departments. For every employee, the id, name,
and the parking area must be stored. For each department, the name, the number, and the
budget of the department are stored, together with the hiring date of each of the employees.

(A) An ER model:

Employee

EmpNo

EName

PArea

Dept

DeptNo

DName

Budget

worksIn< 1, 1 > < 1, ∗ >

since

(B) Dependency Analysis

The FD DeptNo → PArea is detected.

• Inter-relational FDs are not allowed.

• the universal relation of a database (a broad join of all its relations along all FK-PK
references) allows data analysis tools to detect such inter-relational FDs.

⇒ Re-Design ✷

396

