
Introduction to Databases
(Winter Term 2021/2022)

Deductive Databases
(Summer Term 2021)

(c) Prof Dr. Wolfgang May
Universität Göttingen, Germany

may@informatik.uni-goettingen.de

Introduction to Databases (BSc):

2+1/3+1 SWS, 5 ECTS: Ch. 1-3, 5; overview of 4+6

4+1 SWS: Ch. 1-6

4+2 SWS: Ch. 1-8

Database Theory/Deductive Databases (MSc): Ch. 8-12

1

Chapter 1
Basic Notions

CONTEXT AND OVERVIEW

• databases are used in ... economy, administration, research ...

• originally: storage of information
relational model, SQL

• evolution: information systems, combining databases and applications

• today: Web-based information systems, electronic data exchange
→ new challenges, semistructured data, XML

1

APPLICATION PROGRAMS VS. DATABASES

(Application) Programs Databases

Runtime Environment Persistent Storage + Access

• short-lived computation • long-lived model of an application domain

• schema

• data

• temporary connections/access by

application programs

2

APPLICATION PROGRAMS VS. DATABASES

(Application) Programs Databases

Runtime Environment Persistent Storage + Access

Programming Paradigms

value-oriented set-oriented,

large amounts of data

variables implicitly specified sets, iterators

procedural/imperative declarative

Pascal, C, C++, Java SQL

note: in both cases, object-orientation is added:

Java: OO + imperative core OQL: SQL + OO

3

APPLICATION PROGRAMS VS. DATABASES

(Application) Programs Databases

Runtime Environment Persistent Storage + Access

Operating Modes

single-user multiuser

• user accounts

one-thread concurrency

• transactions

• safety

• access control

• against physical failure

• consistency, integrity

4

APPLICATION PROGRAMS VS. DATABASES

(Application) Programs Databases

user-defined data structures fixed data model

user-defined schema

internal storage aspects

small runtime data large persistent data

program/algorithm query

algorithms internal algorithms

transactions & safety

• A database system is a specialized data structure, with specialized behavior and -in
contrast to most other data structures- specialized programming languages.

• (Note: the same holds for the XML data model.)

5

3-LEVEL ARCHITECTURE OF A DBMS (ANSI/SPARC STANDARD, 1975)

(blue: concrete languages for a relational database)

external
Level

View 1 View 2 View n

SQL views
PL/SQL procs
XML im-/export
HTML pages/forms
Web Services

logical
Level

Starting point:
conceptual

schema
logical schema SQL

internal
Level

physical schema

DB state
...

... Mappings

Mapping

Mapping

• global model of the application domain: conceptual schema

6

Schema Levels

Conceptual schema: The conceptual schema defines the model of the world as
represented in the database, using an abstract formalism: [intended to be stable]

• definition of all relevant object types and relationship types,

• including integrity constraints,

• independent from the implementation,

• changes only rarely after being defined once.

Logical schema: A mapping from the conceptual schema to a concrete data model.

Physical (internal) schema: Data structures for storing the data, and additional auxiliary
structures for more efficient data handling (e.g., indexes).
[can be changed for optimizations]

Views/external schema/subschemata: Depending on the needs of special users, required
object types and relationship types can be defined, derived from the ones that are defined
in the conceptual model. [easily adaptable to users’ needs]

Mappings:

• define how the objects of the logical level are mapped to the physical level.

• define how the objects of the external level are defined based on those of the logical
level.

7

Data Independence

Independence of the three levels:

• levels connected by mappings,

• every level may use a different data model,

• every level can be changed without affecting the others.

logical data independence: Changes and restructurings in the conceptual schema can be
hidden against the external schema (by appropriate redefinition of mappings).

physical data independence: Modifications in the internal schema (splitting a table, adding
an index, etc.) do not effect the conceptual schema (only redefinition of the mappings).

8

Schema and State

On each level, there exist the notions of schema and state:

Database schema: the schema contains the metadata of the database, i.e., describes the
concepts (e.g., object types and relationship types).

Database state: the state of a database (system) is given by the set of all data contained in
the system. It represents the objects and relationships that hold in the application domain
at a given timepoint.

With the time passing, a database passes through several database states.

• The admissible states are defined in terms of the conceptual schema (e.g., by integrity
constraints),

• the database state itself is represented in the physical schema,

• users may access it through their views, using the external schema.

Data Dictionary: contains the definitions and mappings of the schemas.

9

Chapter 2
Data Models

A data model defines modeling (specification-) constructs which can be used for modeling an
application domain (in general, both its (static) data structures and its (dynamic) behavior).

• definition of data structures (object types and relationship types),

• definition of integrity constraints,

• definition of operations and their effects.

A data model consists of

• a Data Definition Language (DDL) for defining the schema: object types, relationship
types, and integrity constraints.

• a Data Manipulation Language (DML) for processing database states (inserting and
modifying data)

Operations are generic operations (querying, inserting, modifying, and deleting objects or
relationships), or procedures that are constructed from basic operations.

10

DATA MODELS

Kinds of Modeling:

• conceptual modeling: abstract model of the semantics of an application

• logical modeling: more formal model, similar to an abstract datatype/API that has actual
implementations

Some prominent data models:

• Network Model (1964; CODASYL Standard 1971; “legacy”); Hierarchical Model

• Entity-Relationship-Model (1976, conceptual model, only static concepts) [this lecture]

• Unified Modeling Language – UML (∼1995, conceptual model) [Software Engineering]
comprehensive formalism for specifying processes, based on the object-oriented model.

• Relational Model (1970; simple, but clear logical model) [this lecture]

• XML (since 1996; popular since 1998) [Semistructured Data and XML lecture]

• RDF data model (since 1997; popular since 200X); even more basic – only a single
ternary relation – (subject, predicate, object) [Semantic Web]

11

2.1 Entity Relationship Model (ERM)

• purely conceptual model :
Abstract description of the application domain in a graphical framework, which is then
transformed into some logical data model (this lecture: relational model).

• This lecture uses the original “Chen Notation”, named after Peter Pin-Shan Chen (born
1947 in Taichung, Taiwan; 1970-73 Harvard, 1974-78 MIT) who published it in 1976 in
“The Entity-Relationship Model – Toward a Unified View of Data” in the ACM Transactions
on Database Systems journal with min..max-Notation for cardinalities.

• some textbooks/lectures [e.g. the IKS lecture in our “Wirtschaftsinformatik” studies] and
design tools use different notations (especially for the relationships and their cardinalities):

– influenced by the earlier “Bachman Diagrams”,

– influenced by the later UML language (1990s);

– most of them do not allow to model n-ary (n > 2) relationships directly.

– information about the min/max-cardinalities is crucial for the mapping to the relational
model.

• independent from what notation/tool you use: if you do it correctly, the result, i.e., the
relational model obtained from the subsequent mapping step, will be the same.

12

2.1.1 Main Structural Concepts

The main structural concepts for describing a schema in the ERM are Entities and
Relationships.

ENTITY TYPES

Entity type: An entity type represents a concept in the real world. It is given as a pair
(E, {A1, . . . , An}), where E is the name and {A1, . . . , An}, n ≥ 0 are the attributes
(literal-valued properties) of a type.

Attribute: a relevant property of entities of a given type. Each attribute can have (literal)
values from a given domain.

Example 2.1
(Continent, {name, area})
(Country, {name, code, population, area}),
(City, {name, population, latitude, longitude, elevation}),
(Province, {name, area, population}), ✷

13

ENTITIES

• An entity set e of an entity type E is a finite set of entities.

• each entity describes a real-world object. Thus, it must be of one of the defined entity
types E. It assigns a value to each attribute that is declared for the entity type E.

Example 2.2
Entity set of the entity type (City, {name, population, latitude, longitude}):

{(name: Aden, population: 250000, latitude: 13, longitude: 50),
(name: Kathmandu, population: 393494, latitude: 27.45, longitude: 85.25),
(name: Ulan Bator, population: 479500, latitude: 48, longitude: 107) } ✷

14

GRAPHICAL REPRESENTATION

• Entity types are represented as rectangles:

Continent

Country

Province

City

Organization

Language

Religion

Ethnic Grp.

River Lake

Sea Island

Desert Mountain

15

• Attributes are represented as ovals:

Country

name
codearea

population government

gross product
independence

inflation

Country

name

Germany

code
D

area
356910

population
83536115

government

federal republic

gross product

1,452,200,000 independence

18.01.1871

inflation

2%

16

RELATIONSHIP TYPES

Relationship type: describes a concept of relationships between entities. It is given as a
triple (B, {RO1 : E1, . . . , ROk : Ek}, {A1, . . . , An}), where B is the name,
{RO1, . . . , ROk}, k ≥ 2, is a list of roles, {E1, . . . , Ek} is a list of entity types associated to
the roles, and {A1, . . . , An}, n ≥ 0 is the set of attributes of the relationship type.

In case that k = 2, the relationship type is called binary, otherwise n-ary.

Roles are pairwise different – the associated entity types are not necessarily pairwise
distinct. In case that Ei = Ej for i 6= j, there is a recursive relationship.

As long as there are no disambiguities, a role may be identified with the corresponding
entity type. Roles are useful e.g. for annotating the semantic aspects of the reality.

Attributes describe relevant properties of relationships of a given type.

Example 2.3
(capital, {Country, City}, ∅),
(encompasses, {Continent, Country}, {percent}),
(belongsto, {Province, Country}, ∅),
(flowsinto, {tributary: River, main: River}, ∅) ✷

17

RELATIONSHIP TYPES AND RELATIONSHIP INSTANCES

• A relationship set b of a relationship type B is a finite set of relationships.

• A relationship (instance) of a relationship type B is defined by the entities that are
involved in the relationship, according to their associated roles. For each role, there is
exactly one entity involved in the relationship, and every attribute is assigned a value.

(see examples next slide)

18

RELATIONSHIPS

City Countryin

Freiburg Germany

recursive relationship type

River flows_into
main river

tributary riverRhein, Main

relationship type with attributes

Continent Countryencompasses

percent
Europe Russia

20

relationship type with roles

City Countrycapitalis of

Berlin Germany

19

Recursive Relationship Types

• Non-symmetric recursive relationship types require the use of roles:

River flows_into
main river

tributary riverRhein, Main

• Symmetric recursive relationship types are indicated by the absence of roles:

Country borders length

Aside – storage aspects:
For symmetric relationship types, it is sufficient to store them only in one direction:

– saves memory;

– define a “view” as symmetric hull over the relation;

– bidirectional storage: risk of inconsistencies, e.g. border(D,CH,334) and
border(CH,D,335).

20

Example: ER Model of a geographical database

Province City

Country Continent

inProv

capital

belongsTo capital

encompasses

borders

code

name

pop.

name

area

pop.

name

pop.

longitude
latitude

name

areapercent

length

21

DATABASE STATES

A (database) state associates the entity types and relationship types of a given schema with
an entity set and a relationship set, respectively.

(cf. examples above – can be represented graphical as a graph/network)

22

2.1.2 Integrity Constraints

There are additional constraints on the admissible database states.

Domains: Every attribute is assigned a domain which specifies the set of admissible values.

Keys: a key is a set of attributes of an entity type, whose values together allow for a unique
identification of an entity amongst all entities of a given type (cf. candidate keys, primary
keys).

Relationship Cardinalities: every relationship type is assigned a cardinality that specifies
the minimal and maximal number of relationships in which an entity of a given type/role
may be involved.

Referential Integrity: each entity which occurs in a relationship in any database state must
also exist in the entity set of this state
(condition is trivial when represented as a graph, but crucial later in the relational model)

... to be described in detail on the following slides

23

KEYS

A key is a set of attributes of an entity type, whose values together allow for a unique
identification of an entity amongst all entities of a given type (cf. candidate keys, primary
keys).

For an entity type (E, {A1, . . . , An}) and an entity set e of E, a set K ⊆ {A1, . . . , An} satisfies
the key constraint if:

• K uniquely identifies any element µ ∈ e, i.e., for all µ1, µ2 ∈ e, if µ1 and µ2 have the same
values for all attributes in K, then µ1 = µ2.

Declaring a set of attributes to be a key thus states a condition on all admissible database
states.

Graphically, key attributes are distinguished by underlining.

24

RELATIONSHIP CARDINALITIES

Every relationship type is assigned a cardinality that specifies the minimal and maximal
number of relationships in which an entity of a given type/role may be involved.

The cardinality of a relationship type B wrt. one of its roles RO is an expression of the form
(min,max) where 0 ≤ min ≤ max, and max = ∗ means “arbitrary many”.

A set b of relationships of relationship type B satisfies the cardinality (min,max) of a role RO

if for all entities µ of the corresponding entity type E the following holds: there exist at least
min and at most max relationships b in which µ is involved in the role RO.

E2

E1

...

Ek

B(min1,max1)

(min2,max2)

(mink,maxk)

25

Example: ER Model of a geographical database

Province City

Country Continent

inProv< 0, ∗ > < 1, 1 >

capital

< 1, 1 > < 0, 1 >

belongsTo

< 1, 1 >

< 1, ∗ >

capital

< 1, 1 >

< 0, 1 >

encompasses< 1, ∗ > < 1, ∗ >

borders

< 0, ∗ >< 0, ∗ >

code

name

pop.

name

area

pop.

name

pop.

longitude
latitude

name

areapercent

length

Footnote: the <1,1> cardinality for country-capital might actually not hold
in exceptional cases. The modeling here expresses the “normality” (will be
used on Slide 56). On the other hand, sometimes the cardinalities are also
used for pointing out the exceptional cases.

26

Comment on Minimal Cardinalities

• Conceptual modeling: minimal cardinality describes the allowed state of an
up-and-running database:

– 0 means the relationship is optional

– 1 means the relationship is mandatory

• during initialization, and when new items are added, these may be temporarily violated
(cf. country-capital <1,1>. How to add a new country?)

Additional Notions for Cardinalities

For binary relationships, the following notions are used:

• if max1 = max2 = 1, it is called a 1 : 1-relationship.
is_capital ⊆ Country × City is a 1:1-relationship

• if max1 > 1,max2 = 1, it is called a n : 1-relationship (functional relationship) from E2 to
E1, and a 1 : n-relationship from E1 to E2.
has_city ⊆ Country × City is a 1:n-relationship

• Otherwise, it is called an n : m-relationship.
borders ⊆ Country × Country is an n:m-relationship

27

ASIDE: AN ALTERNATIVE NOTATION FOR CARDINALITIES

Indicates only the maximum cardinality: 1,2,3, . . .N , M , ...
and is to be read the other way round:

• Each combination (e1, . . . , ei−1, ei+2, . . . , ek) (ej of type Ej) is in relation with at most ni

entities of type Ei:

E1 E2

B
Ek E3

n1 n2

n3nk

Mandatory relationships can be indicated by double lines:

• Each country is a member of arbitrary many organizations (maybe none); each
organization has at least 1, and arbitrary many countries as members (n:m):

Country Organizationis_memberN M

• Each country has at least one, and arbitrary many cities, each city belongs to exactly one
country (1:n):

Country Cityhas_City1 N

28

REFERENTIAL INTEGRITY

Each entity which occurs in a relationship in any database state must also exist in the entity
set of this state.

For a relationship type B with relationship set b, a role RO of B that is connected to an entity
type E with entity set e, b and e satisfy the referential integrity wrt. RO, if for every entity µ

that is associated with some ν ∈ b under the role RO, µ ∈ e holds.

Note:

• referential integrity is inherent to the ER Model, thus, it is not necessary to care for it.

• there are data models (e.g., the relational model (which is described later) where
referential integrity must be enforced explicitly).
(postpone the discussion to the relational model)

29

2.1.3 Further Concepts

WEAK ENTITY TYPES

A weak entity type is an entity type without a key.

Thus entities of such types must be identified by the help of another entity (see the following
figure).

• Weak entity types must be involved in at least one n : 1-relationship with a strong entity
type (where the strong entity type stands on the 1-side).

– this relationship is called an identifying relationship,

– the corresponding entity type is called an identifying entity type.

• They usually have a local key, i.e., a set of attributes that can be extended by the primary
keys of the corresponding strong entity type to provide a key for the weak entity type (key
inheritance).
(cases where they do not have a local key are rare, but do exist; usually resulting from
reification, cf. Slide 38.)

• Note that weak entity types and their identifying relationship types have a special notation.

30

WEAK ENTITY TYPES

Province

name
area

pop.35751
10272069Baden-W.

City

name

pop.

longitudelatitude

198496

7.848

Freiburg

in Prov.

< 0, ∗ >

< 1, 1 >

Countryin < 1, ∗ >< 1, 1 >

name

code

areapop.

248678

D

61170500

Germany

belongsTo

< 1, 1 >

< 1, ∗ >

There is also a Freiburg/CH
and Freiburg/Elbe, LowerSaxony (Niedersachsen)
(Note: Province is also itself a weak entity type since several countries have provinces with
the same name (e.g., Western, Distrito Federal, Amazonas))

31

EXTENSIONS OF THE ERM: MULTIVALUED AND COMPLEX ATTRIBUTES

Attributes can be

• set-valued or multi-valued,

• structured

Country Mountainlanguage geo coord

latitude

longitude

32

EXTENSIONS OF THE ERM: GENERALIZATION/SPECIALIZATION

• covers the general idea of a class hierarchy between entity types.

E

E1 . . . Ek

E is called supertype, Ei are subtypes for 1 ≤ i ≤ k. Each entity of a subtype s also an
entity of the supertype.

• The common attributes and relationships are assigned to the more general type.

• The attributes and relationships of the supertype are also applicable to the subtypes
(which may define further attributes and relationships).

33

Generalization/Specialization

• Geographical things such as rivers, lakes, seas, mountains, deserts, and islands (no
lowlands, highlands, savannas, fens, etc). All such geographical things have in common
that they have names and theat they are involved in in-relationships with countries.

• Rivers, lakes, and seas are waters. These can e.g. be involved in located-at relationships
with cities.

Geo Country

g

Mountain Island Desert Water City

s g

Volcano River Lake Sea

in< 1, ∗ > < 0, ∗ >name

located_at< 0, ∗ > < 0, ∗ >

length depth area

elevation

depth area

34

Generalization/Specialization

Integrity Constraints (cf. UML)

• Common integrity constraints ISA: ISA is satisfied in a database state if the entity sets of
the subtypes are subsets of the entity sets of the supertype,

• optional integrity constraint Disjointness: if the entity sets of the subtypes are disjoint,

• optional integrity constraint Covering: if the union of the entity sets of the subtypes cover
the entity set of the supertype.

Intuition Annotations

• Generalization g

Bottom-up: from the subclasses, the superclass is “discovered” as a general concept.

• Specialization s

Top-Down: from the superclass, subclasses are “discovered” as restricted concepts.

• generalization usually leads to “covering”, and in most cases also to disjointness.

• specialization usually leads to non-covering.

35

EXTENSIONS OF THE ERM: AGGREGATION

The ERM does not allow to define relationship types that involve relationship types (note that
attributes of relationship types are allowed).

• This restriction can be overcome by defining artificial entity types for “the relationship”.

A river flows (finally) into a sea/lake/river; more detailed, such a relationship instance is
related to one or two countries:

River Waterflows into< 0, 2 > < 0, ∗ >

Country

< 0, ∗ >

latitude

longitude

This representation is ambiguous: A river could flow into two waters!?
(at different latitude/longitudes?)

36

Aggregation

• originally introduced in J. Smith, D. Smith: Database Abstractions: Aggregation.
In: Comm. of the ACM. Vol. 20, Nr. 6, 1977, pp. 405-413

Using an “aggregation entity type”, this information can be specified much clearer by
introducing an aggregate type estuary for the “river flows into another water” relationship:

Estuary

River Waterflows into< 0, 1 > < 0, ∗ >

Country

in

< 1, 2 >

< 0, ∗ >

latitude

longitude

The cardinalities allow for expressing a more detailed semantics than with the plain ternary
relationship type.

37

General Modeling Strategy: Reification

• Since the 1990s, this modeling strategy is called Reification (“turning something into a
thing”), and applied in several modeling approaches (ERM, UML, XML, RDF)
(UML: [Software Engineering Lecture] Association classes)

• Reification can replace ER-specific modeling concepts like n-ary relationship types or
aggregation entity types by introducing new (usually weak) entity types, and then using
binary relationships only.

River Estuary Water

Country

has Est.< 0, 1 > < 1, 1 > into< 1, 1 > < 0, ∗ >

in

< 1, 2 >

< 0, ∗ >

name
latitude

longitude

Estuary does not
have a local key,
river.name is
sufficient

Aside: in UML, associations (=relationships)
cannot have attributes ⇒ reification needed.

• For country-isMember(type)-organization
the “reified thing” exists, as a contract.

• country-encompassed(percent)-continent:
the “reified thing” does not exist in reality.

38

2.1.4 Discussion ERM

• With the structuring concepts of the ERM and its extensions, the static aspects of a
relevant excerpt of the real world can be modeled semantically adequate in a natural way.

• The graphical representation is also understandable for non-computer-scientists.

• The ERM is useful

– in the early stages of the design of the database (i.e., when designing the conceptual
schema) when discussions with the potential users take place.

– for documentation (!)

• The ERM can easily be transformed into the data models of existing, real-world database
systems (especially, into the relational model – as will be shown in the sequel).

• There are no relevant DBMS that use the ERM directly. They are subsumed by
object-relational and object-oriented DBMS (and more recently also by RDF-DBMS).

39

DISCUSSION ERM (CONT’D)

• There is a more complex and more expressive language:
UML (Unified Modeling Language):

– static aspects are described in more detail than in the ERM, using notions of a fully
object-oriented model,

– dynamic aspects are also described graphically,

– coarser granularities for describing information systems and workflows are provided.

40

SUMMARY: GRAPHICAL NOTATION OF ER CONSTRUCTS

Entity Type weak entity type

relationship type identifying relationship type

scalar attribute key attribute

multivalued attribute complex attribute

g/s generalization,

specialization

“aggregation”

(=reification)

Convention: names of entity types start with a capital letter, names of relationship types and
attributes start with non-capital letters.

41

2.1.5 Some Exercises

Exercise 2.1
Consider a binary relationship type and the cardinalities (0, 1) and (1, ∗). Investigate all
possible ways how to assign these relationship cardinalities to the relationship type. For each
variant, give a nontrivial state that satisfies them, and a state that violates them. ✷

Exercise 2.2
Discuss ER schemata for the following scenario:

• All students work on projects. For this, they need tools. ✷

42

SOME EXERCISES (CONT’D)

Exercise 2.3
Consider a ternary relationship type between the entity types supplier, product, and part
(where suppliers deliver parts for a product).

Supplier

Product Part

delivers

• Check whether this situation can be represented by using only binary relationship types.

– Under which conditions is it possible?

– Can such situations be described by the relation cardinalities?

• Show that for an ER schema consisting of a ternary relationship there is always an
equivalent ER-Schema that consists of three binary relationship types and an additional
entity type. ✷

43

DEVELOPMENT OF A DATABASE APPLICATION

(cf. 3-Level-Architecture, Slide 6)

Conceptual Design: structuring of the requirements for the representation of the relevant
excerpt of the real world:

• independent from the database system to be used (phys. level),

• independent from the detailed views of the users (external schema).

results in the conceptual schema, in general an ER schema (or specified in UML).

... but this cannot be “used” in a real database.

Implementation Design: convert into the actual, logical schema of the logical level in a
logical model (Relational Model),

(process to be continued then on Slide 49)

44

