
Chapter 3
Relational Database Languages:
Relational Algebra

We first consider only query languages.

Relational Algebra: Queries are expressions over operators and relation names.

Relational Calculus: Queries are special formulas of first-order logic with free variables.

SQL: Combination from algebra and calculus and additional constructs. Widely used DML
for relational databases.

QBE: Graphical query language.

Deductive Databases: Queries are logical rules.

65

RELATIONAL DATABASE LANGUAGES : COMPARISON AND OUTLOOK

Remark:

• Relational Algebra and (safe) Relational Calculus have the same expressive power.
For every expression of the algebra there is an equivalent expression in the calculus, and
vice versa.

• A query language is called relationally complete , if it is (at least) as expressive as the
relational algebra.

• These languages are compromises between efficiency and expressive power; they are
not computationally complete (i.e., they cannot simulate a Turing Machine).

• They can be embedded into host languages (e.g. C++ or Java) or extended (PL/SQL),
resulting in full computational completeness.

• Deductive Databases (Datalog) are more expressive than relational algebra and calculus.

66

3.1 Relational Algebra: Computations over Relations

Operations on Tuples – Overview Slide

Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

(Formal definition of µ see Slide 59)

• For ∅ ⊂ Ȳ ⊆ X̄, the expression µ[Ȳ] denotes the projection of µ to Ȳ .

Result: µ[Ȳ] ∈ Tup(Ȳ) where µ[Ȳ](A) = µ(A), A ∈ Ȳ .

• A selection condition α (wrt. X̄) is an expression of the form A θ B or A θ c, or c θ A

where A, B ∈ X̄, dom(A) = dom(B), c ∈ dom(A), and θ is a comparison operator on that
domain like e.g. {=,6=,≤,<,≥,>}.

A tuple µ ∈ Tup(X̄) satisfies a selection condition α, if – according to α – µ(A) θ µ(B) or
µ(A) θ c, or c θ µ(A) holds.

These (atomic) selection conditions can be combined to formulas by using ∧, ∨, ¬, and
(,).

• For Ȳ = {B1, . . . , Bk}, the expression µ[A1 → B1, . . . , Ak → Bk] denotes the renaming
of µ.

Result: µ[. . . , Ai → Bi, . . .] ∈ Tup(Ȳ) where µ[. . . , Ai → Bi, . . .](Bi) = µ(Ai) for 1 ≤ i ≤ k.

67

Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Projection

For ∅ ⊂ Ȳ ⊆ X̄, the expression µ[Ȳ] denotes the projection of µ to Ȳ .

Result: µ[Ȳ] ∈ Tup(Ȳ) where µ[Ȳ](A) = µ(A), A ∈ Ȳ .

projection to a given set of attributes

Example 3.1
Consider the relation schema R(X̄) = continent(Name, Area): X̄ = [Name, Area]

and the tuple µ = “Asia”, 4.50953e+07 .

formally: µ(Name) = “Asia”, µ(Area) = 4.5E7

projection attributes: Let Ȳ = [Name]

Result: µ[Name] = “Asia” 2

68

Again, µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Selection

A selection condition α (wrt. X̄) is an expression of the form A θ B or A θ c, or c θ A where
A, B ∈ X̄, dom(A) = dom(B), c ∈ dom(A), and θ is a comparison operator on that domain
like e.g. {=, 6=,≤,<,≥,>}.

A tuple µ ∈ Tup(X̄) satisfies a selection condition α, if – according to α – µ[A] θ µ[B] or
µ[A] θ c, or c θ µ[A] holds.

yes/no-selection of tuples (without changing the tuple)

Example 3.2
Consider again the relation schema R(X̄) = continent(Name, Area): X̄ = [Name, Area].

Selection condition: Area > 10.000.000.

Consider again the tuple µ = “Asia”, 4.50953e+07 .

formally: µ(Name) = “Asia”, µ(Area) = 4.5E7

check: µ(Area) > 10.000.000

Result: yes. 2

These (atomic) selection conditions can be combined to formulas by using ∧, ∨, ¬, and (,).

69

Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Renaming

For Ȳ = {B1, . . . , Bk}, the expression µ[A1 → B1, . . . , Ak → Bk] denotes the renaming of µ.

Result: µ[. . . , Ai → Bi, . . .] ∈ Tup(Ȳ) where µ[. . . , Ai → Bi, . . .](Bi) = µ(Ai) for 1 ≤ i ≤ k.

renaming of attributes (without changing the tuple)

Example 3.3
Consider (for a tuple of the table R(X̄) = encompasses(Country, Continent, Percent)):

X̄ = [Country, Continent, Percent].

Consider the tuple µ = “R”, “Asia”, 80 .

formally: µ(Country) = “R”, µ(Continent) = “Asia”, µ(Percent) = 80

Renaming: Ȳ = [Code, Name, Percent]

Result: a new tuple
µ[Country → Code, Continent → Name, Percent → Percent] = “R”, “Asia”, 80 that now
fits into the schema new encompasses(Code, Name, Percent). 2

The usefulness of renaming will become clear later ...

70

EXPRESSIONS IN THE RELATIONAL ALGEBRA

What is an algebra?

• An algebra consists of a ”domain” (i.e., a set of ”things”), and a set of operators.

• Operators map elements of the domain to other elements of the domain.

• Each of the operators has a ”semantics”, that is, a definition how the result of applying it
to some input should look like.

• Algebra expressions are built over basic constants and operators (inductive definition).

Relational Algebra

• The ”domain” consists of all relations (over arbitrary sets of attributes).

• The operators are then used for combining relations, and for describing computations -
e.g., in SQL.

• Relational algebra expressions are defined inductively over relations and operators.

• Relational algebra expressions define queries against a relational database.

71

INDUCTIVE DEFINITION OF EXPRESSIONS

Atomic Expressions

• For an arbitrary attribute A and a constant a ∈ dom(A), the constant relation A : {a} is
an algebra expression.

Format: [A]

Result relation: {a}
A:{a}

A

a

• Given a database schema R = {R1(X̄1), . . . , Rn(X̄n)}, every relation name Ri is an
algebra expression.

Format of Ri: X̄i

Result relation (wrt. a given database state S): the relation S(Ri) that is currently stored
in the database.

72

Structural Induction: Applying an Operator

• takes one or more input relations in1, in2, . . .

• produces a result relation out:

– out has a format ,
depends on the formats of the input relations.

– out is a relation, i.e., it contains some tuples,
depends on the content of the input relations.

73

BASE OPERATORS

Let X̄, Ȳ formats and r ∈ Rel(X̄) and s ∈ Rel(Ȳ) relations over X̄ and Ȳ .

Union

Assume r, s ∈ Rel(X̄).
Result format of r ∪ s: X̄

Result relation: r ∪ s = {µ ∈ Tup(X̄) | µ ∈ r or µ ∈ s}.

r =

A B C

a b c
d a f
c b d

s =

A B C

b g a
d a f

r ∪ s =

A B C

a b c
d a f
c b d
b g a

74

Set Difference

Assume r, s ∈ Rel(X̄).
Result format of r \ s: X̄

Result relation: r \ s = {µ ∈ r | µ 6∈ s}.

r =

A B C

a b c
d a f
c b d

s =

A B C

b g a
d a f

r \ s =

A B C

a b c
c b d

75

Projection

Assume r ∈ Rel(X̄) and Ȳ ⊆ X̄.
Result format of π[Ȳ](r): Ȳ

Result relation: π[Ȳ](r) = {µ[Ȳ] | µ ∈ r}.

Example 3.4

Continent Let Ȳ = [Name] π[Name](Continent)

Name Area Name

Europe 9562489.6 µ1[Name] = “Europe” Europe

Africa 3.02547e+07 µ2[Name] = “Africa” Africa

Asia 4.50953e+07 µ3[Name] = “Asia” Asia

America 3.9872e+07 µ4[Name] = “America” America

Australia 8503474.56 µ5[Name] = “Australia” Australia
2

76

Selection

Assume r ∈ Rel(X̄) and a selection condition α over X̄.

Result format of σ[α](r): X̄

Result relation: σ[α](r) = {µ ∈ r | µ satisfies α}.

Example 3.5

Continent Let α = “Area > 10.000.000”

Name Area

Europe 9562489.6 µ1(Area) < 10.000.000 no

Africa 3.02547e+07 µ2(Area) > 10.000.000 yes

Asia 4.50953e+07 µ3(Area) > 10.000.000 yes

America 3.9872e+07 µ4(Area) > 10.000.000 yes

Australia 8503474.56 µ5(Area) < 10.000.000 no

σ[Area > 10E6](Continent)

Name Area

Africa 3.02547e+07

Asia 4.50953e+07

America 3.9872e+07

2

77

Renaming

Assume r ∈ Rel(X̄) with X = [A1, . . . , Ak] and a renaming [A1 → B1, . . . , Ak → Bk].

Result format of ρ[A1 → B1, . . . , Ak → Bk](r): [B1, . . . , Bk]

Result relation: ρ[A1 → B1, . . . , Ak → Bk](r) = {µ[A1 → B1, . . . , Ak → Bk] | µ ∈ r}.

Example 3.6
Consider the renaming of the table encompasses(Country, Continent, Percent):

X̄ = [Country, Continent, Percent]

Renaming: Ȳ = [Code, Name, Percent]

ρ[Country → Code, Continent → Name, Percent → Percent](encompasses)

Code Name Percent

R Europe 20

R Asia 80

D Europe 100
...

...
...

2

78

(Natural) Join

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ) for arbitrary X̄, Ȳ .

Convention: Instead of X̄ ∪ Ȳ , we also write XY .
for two tuples µ1 = v1, . . . , vn and µ2 = w1, . . . , wm , µ1µ2 := v1, . . . , vn, w1, . . . , wm .

Result format of r ./ s: XY .
Result relation: r ./ s = {µ ∈ Tup(XY) | µ[X̄] ∈ r and µ[Ȳ] ∈ s}.

Motivation

Simplest Case: X̄ ∩ Ȳ = ∅ ⇒ Cartesian Product r ./ s = r × s

r × s = {µ1µ2 ∈ Tup(XY) | µ1 ∈ r and µ2 ∈ s}.

r =

A B

1 2

4 5

s =

C D

a b

c d

e f

r ./ s =

A B C D

1 2 a b

1 2 c d

1 2 e f

4 5 a b

4 5 c d

4 5 e f

79

Example 3.7 (Cartesian Product of Continent and Encompasse s)

Continent× encompasses

Name Area Continent Country Percent

Europe 9562489.6 Europe Germany 100

Europe 9562489.6 Europe Russia 20

Europe 9562489.6 Asia Russia 80

Europe 9562489.6 : : :

Africa 3.02547e+07 Europe Germany 100

Africa 3.02547e+07 Europe Russia 20

Africa 3.02547e+07 Asia Russia 80

Africa 3.02547e+07 : : :

Asia 4.50953e+07 Europe Germany 100

Asia 4.50953e+07 Europe Russia 20

Asia 4.50953e+07 Asia Russia 80

Asia 4.50953e+07 : : :

: : : : :
2

80

Back to the Natural Join

General Case X̄ ∩ Ȳ 6= ∅: shared attribute names constrain the result relation.

Again the definition: r ./ s = {µ ∈ Tup(XY) | µ[X̄] ∈ r and µ[Ȳ] ∈ s}.

Example 3.8
Consider encompasses(country,continent,percent) and
is member(organization,country,type):

encompasses

Country Continent Percent

R Europe 20

R Asia 80

D Europe 100

: : :

is member

Organization Country Type

EU D member

UN D member

UN R member

: : :

encompasses ./ is member = {µ ∈ Tup(country, cont, perc, org, type) |

µ[country, cont, perc] ∈ encompasses and µ[org, country, type] ∈ is member}

2

81

Example 3.8 (Continued)

encompasses ./ is member = {µ ∈ Tup(country, cont, perc, org, type) |

µ[country, cont, perc] ∈ encompasses and µ[org, country, type] ∈ is member}

start with (R, Europe, 20) ∈ encompasses.
check which tuples in is member match:

(UN, R, member) ∈ is member matches:
result: (R, Europe, 20, UN, member) belongs to the result.
(some more matches ...)

continue with (R, Asia, 80) ∈ encompasses.
(UN, R, member) ∈ is member matches:
result: (R, Asia, 80, UN, member) belongs to the result.
(some more matches ...)

continue with (D, Europe, 100) ∈ encompasses.
(EU, D, member) ∈ is member matches:
result: (D, Europe, 100, EU, member) belongs to the result.
(UN, D, member) ∈ is member matches:
result: (D, Europe, 100, UN, member) belongs to the result.
(some more matches ...)

82

Example 3.8 (Continued)
Result:

encompasses × is member

Country Continent Percent Organization Type

R Europe 20 UN member

R Europe 20 : :

R Asia 80 UN member

R Asia 80 : :

D Europe 100 UN member

D Europe 100 EU member

D Europe 100 : :

: : : : :
2

83

Example 3.9 (and Exercise)
Consider the expression

continent ./ ρ[Country → Code, Continent → Name, Percent → Percent](encompasses)

2

Functionalities of the Join

• Combining relations

• Selective functionality: only matching tuples survive
(consider joining cities and organizations on headquarters)

DERIVED OPERATORS

Intersection

Assume r, s ∈ Rel(X̄).

Then, r ∩ s = {µ ∈ Tup(X̄) | µ ∈ r and µ ∈ s}.

Theorem 3.1
Intersection can be expressed by Difference: r ∩ s = r \ (r \ s). 2

84

Relational Division

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ) such that Ȳ (X̄.
Result format of r ÷ s: Z̄ = X̄ \ Ȳ .

The result relation r ÷ s is specified as “all Z̄-values that occur in π[Z̄](r), with the additional
condition that they occur in r together with each of the Ȳ values that occur in s”.

Formally,

r ÷ s = {µ ∈ Tup(Z̄) | {µ} × s ⊆ r} = π[Z̄](r) \ π[Z̄]((π[Z̄](r) × s) \ r).

this implies that µ ∈ π[Z̄](r)

• Simple observation: π[Z̄](r) ⊇ r ÷ s.
This constrains the set of possible results.

85

Example 3.10 (Relational Division)
Compute all countries that belong both to Europe and to Asia:

enc

country continent

R Asia

R Europe

IND Asia

D Europe

TR Asia

TR Europe

ET Africa

ET Asia

CH Europe

: :

cts

continent

Asia

Europe

Compute enc ÷ cts:
X̄ = [country, continent], Ȳ = [continent]

Thus, Z̄ = [country].
Consider all values in π[country](enc):
Start with “R” ∈ π[country](enc):

for “Asia” ∈ cts: (“R”,“Asia”) ∈ enc.
for “Europe” ∈ cts: (“R”,“Europe”) ∈ enc.

OK. “R′′ belongs to the result.
Continue with “IND” ∈ π[country](enc):

for “Asia” ∈ cts: (“IND”,“Asia”) ∈ enc.
for “Europe” ∈ cts: (“IND”,“Europe”) /∈ enc.

“IND” does not belong to the result.
:
“TR” belongs to the result.
“ET” does not belong to the result.
“CH” does not belong to the result.

2

86

Example 3.10 (Cont(d))
Consider again Example 3.10 and the formal algebraic characterization of Division:

r ÷ s = {µ ∈ Tup(Z̄) | {µ} × s ⊆ r} = π[Z̄](r) \ π[Z̄]((π[Z̄](r) × s) \ r).

1. r = belongs to, s = continent, Z = Country.

2. (π[Z̄](r) × s) contains all tuples of countries with Europe and Asia, e.g.,
(Germany,Europe), (Germany,Asia), (Russia,Europe), (Russia,Asia)

3. ((π[Z̄](r) × s) \ r) contains all such tuples which are not “valid”, e.g., (Germany,Asia).

4. projecting this to the countries yields all those countries where a non-valid tuple has been
generated in (2), i.e., which do not belong both to Europe and Asia.

5. π[Z̄](r) is the list of all countries ...

6. ... subtracting those computed in (4) yields those that belong both to Europe and Asia. 2

87

θ-Join

Combination of Cartesian Product and Selection:

Assume r ∈ Rel(X̄), and s ∈ Rel(Ȳ), such that X̄ ∩ Ȳ = ∅, and A θ B a selection condition.

r ./AθB s = {µ ∈ Tup(XY) | µ[X̄] ∈ r, µ[Ȳ] ∈ s and µ satisfies AθB} = σ[AθB](r × s).

Equi-Join

θ-join that uses the “=”-predicate.

Example 3.11 (and Exercise)
Consider again Example 3.7:

Continent × encompasses contained tuples that did not really make sense.

(Continent × encompasses)continent=name would be more useful.

Furthermore, consider
π[continent, area, code, percent]((Continent× encompasses)continent=name):

• removes the - now redundant - “name” column,

• is equivalent to the natural join (ρ[name → continent]continent) ./ encompasses. 2

88

SEVERAL EXTENSIONS OF THE JOIN

• Join is the operator for combining relations

Example 3.12
Consider a completely different database now for investigating joins.

• Persons work in divisions of a company

• Tools are assigned to the divisions

Works

Person Division

John Production

Bill Production

John Research

Mary Research

Sue Sales

Tools

Division Tool

Production hammer

Research pen

Research computer

Administration typewriter
2

89

Example 3.12 (Continued)
Consider the join of both tables:

Works

Person Division

John Production

Bill Production

John Research

Mary Research

Sue Sales

Tools

Division Tool

Production hammer

Research pen

Research computer

Admin. typewriter

Works ./ Tools

Person Division Tool

John Production hammer

Bill Production hammer

John Research pen

John Research computer

Mary Research pen

Mary Research computer

• there is no tuple that describes Sue

• there is no tuple that describes the administration or sales division

• there is no tuple that shows that there is a typewriter 2

90

Semi-Join

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ) such that X̄ ∩ Ȳ 6= ∅.

Result format: X̄

Result relation: r �< s = π[X̄](r ./ s)

The semi-join r �< s does not return the join, but checks which tuples of r “survive” the join
with s (i.e., “which find a counterpart in s wrt. the shared attributes”):

Example 3.13
Consider again Example 3.12:

Works �< Tools

Person Division

John Production

Bill Production

John Research

Mary Research

Works >� Tools

Division Tool

Production hammer

Research pen

Research computer
2

• Semijoins are e.g. used for optimizing the evaluation of multiple joins.
[see lecture on Database Theory]

91

Outer Join

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ).

Result format of r A./@ s: XY

The outer join extends the “inner” join with all tuples that have no counterpart in the other
relation (filled with null values):

Example 3.14 (Outer Join)
Consider again Example 3.12

Works A./@ Tools

Person Division Tool

John Production hammer

Bill Production hammer

John Research pen

John Research computer

Mary Research pen

Mary Research computer

Sue Sales NULL

NULL Admin typewriter
2

92

Formally, the result relation is defined as follows:

J = r ./ s — take the (“inner”) join as base
r0 = r \ π[X̄](J) = r \ r �< s — r-tuples that “are missing”
s0 = s \ π[Ȳ](J) = s \ r >� s — s-tuples that “are missing”
Y0 = Ȳ \ X̄, X0 = X̄ \ Ȳ

Let µ1 ∈ Tup(Y0), µ2 ∈ Tup(X0) such that µ1, µ2 consist only of null values

r A./@ s = J ∪ (r0 × {µ1}) ∪ (s0 × {µ2}).

Example 3.14 (Continued)
For the above example,

J = Works ./ Tools

r0 = [“Sue”,“Sales”], s0 = [“Admin”,“Typewriter”]
Y0 = Tool, X0 = Person

µ1 =
Tool

null
µ2 =

Person

null

r0 × {µ1} =
Person Division Tool

Sue Sales null
s0 × {µ2} =

Person Division Tool

null Admin Typewriter
2

93

Generalized Natural Join

Assume ri ⊆ Tup(X̄i).

Result format: ∪n
i=1X̄i

Result relation: ./n
i=1 ri = {µ ∈ Tup(∪n

i=1X̄i) | µ[X̄i] ∈ ri}

Exercise 3.1
Prove that the natural join is commutative (which makes the generalized natural join
well-defined):

./n
i=1 ri = ((. . . ((r1 ./ r2) ./ r3) ./ . . .) ./ rn)

= (r1 ./ (r2 . . . (rn−1 ./ rn) . . .))
2

94

EXPRESSIONS

• inductively defined: combining expressions by operators

Example 3.15
The names of all cities where (i) headquarters of an organization are located, and (ii) that are
capitals of a member country of this organization.

As a tree:

π[City]

∩

π[Abbrev, City, Prov, Country] ρ[Capital → City]

Organization π[Abbrev, Capital, Prov, Country]

./

ρ[Organization → Abbrev] ρ[Code → Country]

is Member Country 2

Note that there are many equivalent expressions.

95

EXPRESSIONS IN THE RELATIONAL ALGEBRA AS QUERIES

Let R = {R1, . . . , Rk} a set of relation schemata of the form Ri(X̄i). As already described, an
database state to R is a structure S that maps every relation name Ri in R to a relation
S(Ri) ⊆ Tup(X̄i)

Every algebra expression Q defines a query against the state S of the database:

• For given R, Q is assigned a format ΣQ (the format of the answer).

• For every database state S, S(Q) ⊆ Tup(ΣQ) is a relation over ΣQ, called the answer set
for Q wrt. S.

• S(Q) can be computed according to the inductive definition, starting with the innermost
(atomic) subexpressions.

• Thus, the relational algebra has a functional semantics .

96

SUMMARY: INDUCTIVE DEFINITION OF EXPRESSIONS

Atomic Expressions

• For an arbitrary attribute A and a constant a ∈ dom(A), the constant relation A : {a} is
an algebra expression.

ΣA:{a} = [A] and S(A : {a}) = A : {a}

• Every relation name R is an algebra expression.

ΣR = X̄ and S(R) = S(R).

97

SUMMARY (CONT’D)

Compound Expressions

Assume algebra expressions Q1, Q2 that define ΣQ1
, ΣQ2

, S(Q1), and S(Q2).

Compound algebraic expressions are now formed by the following rules (corresponding to the
algebra operators):

Union

If ΣQ1
= ΣQ2

, then Q = (Q1 ∪ Q2) is the union of Q1 and Q2.

ΣQ = ΣQ1
and S(Q) = S(Q1) ∪ S(Q2).

Difference

If ΣQ1
= ΣQ2

, then Q = (Q1 \ Q2) is the difference of Q1 and Q2.

ΣQ = ΣQ1
and S(Q) = S(Q1) \ S(Q2).

Projection

For ∅ 6= Ȳ ⊆ ΣQ1
, Q = π[Ȳ](Q1) is the projection of Q1 to the attributes in Ȳ .

ΣQ = Ȳ and S(Q) = π[Ȳ](S(Q1)).

98

INDUCTIVE DEFINITION OF EXPRESSIONS (CONT’D)

Selection

For a selection condition α over ΣQ1
, Q = σ[α]Q1 is the selection from Q1 wrt. α.

ΣQ = ΣQ1
and S(Q) = σ[α](S(Q1)).

Natural Join

Q = (Q1 ./ Q2) is the (natural) join of Q1 and Q2.

ΣQ = ΣQ1
∪ ΣQ2

and S(Q) = S(Q1) ./ S(Q2).

Renaming

For ΣQ1
= {A1, . . . , Ak} and {B1, . . . , Bk} a set of attributes, ρ[A1 → B1, . . . , Ak → Bk]Q1 is

the renaming of Q1

ΣQ = {B1, . . . , Bk} and S(Q) = {µ[A1 → B1, . . . , Ak → Bk] | µ ∈ S(Q1)}.

99

Example

Example 3.16
Professor(PNr, Name, Office), Course(CNr, Credits, CName)
teach(PNr, CNr), examine(PNr, CNr)

• For each professor (name) determine the courses he gives (CName).

π [Name, CName] ((Professor ./ teach) ./ Course)

• For each professor (name) determine the courses (CName) that he teaches, but that he
does not examine.

π[Name, CName]((

(π[Name, CNr](Professor ./ teach))

\

(π[Name, CNr](Professor ./ examine))

) ./ Course)

Simpler expression:

π [Name, CName] ((Professor ./ (teach \ examine)) ./ Course) 2

100

EQUIVALENCE OF EXPRESSIONS

Algebra expressions Q, Q′ are called equivalent , Q ≡ Q′, if and only if for all structures S,
S(Q) = S(Q′).

Equivalence of expressions is the basis for algebraic optimization .

Let attr(α) the set of attributes that occur in a selection condition α, and Q, Q1, Q2, . . .

expressions with formats X, X1,

Projections

• Z̄, Ȳ ⊆ X̄ ⇒ π[Z̄](π[Ȳ](Q)) ≡ π[Z̄ ∩ Ȳ](Q).

• Z̄ ⊆ Ȳ ⊆ X̄ ⇒ π[Z̄](π[Ȳ](Q)) ≡ π[Z̄](Q).

Selections

• σ[α1](σ[α2](Q)) ≡ σ[α2](σ[α1](Q)) ≡ σ[α1 ∧ α2](Q)).

• attr(α) ⊆ Ȳ ⊆ X̄ ⇒ π[Ȳ](σ[α](Q)) ≡ σ[α](π[Ȳ](Q)).

Joins

• Q1 ./ Q2 ≡ Q2 ./ Q1.

• (Q1 ./ Q2) ./ Q3 ≡ Q1 ./ (Q2 ./ Q3).

101

EQUIVALENCE OF EXPRESSIONS (CONT’D)

Joins and other Operations

• attr(α) ⊆ X̄1 ∩ X̄2 ⇒ σ[α](Q1 ./ Q2) ≡ σ[α](Q1) ./ σ[α](Q2).

• attr(α) ⊆ X̄1, attr(α) ∩ X̄2 = ∅ ⇒ σ[α](Q1 ./ Q2) ≡ σ[α](Q1) ./ Q2.

• Assume V ⊆ X1X2 and let W = X̄1 ∩ V X2, U = X̄2 ∩ V X1.

Then, π[V](Q1 ./ Q2) = π[V](π[W](Q1) ./ π[U](Q2));

• X̄2 = X̄3 ⇒ Q1 ./ (Q2 op Q3) = (Q1 ./ Q2) op (Q1 ./ Q3) where op ∈ {∪,−}.

Exercise 3.2
Prove some of the equalities (use the definitions given on the “Base Operators” slide). 2

102

EXPRESSIVE POWER OF THE ALGEBRA

Transitive Closure

The transitive closure of a binary relation R, denoted by R∗ is defined as follows:

R1 = R

Rn+1 = {(a, b)| there is an s s.t. (a, x) ∈ Rn and (x, b) ∈ R}

R∗ =
⋃

1..∞

Rn

Examples:

• child(x,y): child* = descendant

• flight connections

• flows into of rivers in MONDIAL

Theorem 3.2
There is no expression of the relational algebra that computes the transitive closure of
arbitrary binary relations r. 2

103

EXAMPLES

Time to play. Perhaps postpone examples after comparison with SQL (next subsections)

Aspects

• join as “extending” operation (cartesian product – “all pairs of X and Y such that ...”)

• equijoin as “restricting” operation

• natural join/equijoin in many cases along key/foreign key relationships

• relational division (in case of queries of the style “return all X that are in a given relation
with all Y such that ...”)

104

