Chapter 3 Relational Database Languages: Relational Algebra

We first consider only query languages.

Relational Algebra: Queries are expressions over operators and relation names.

Relational Calculus: Queries are special formulas of first-order logic with free variables.

SQL: Combination from algebra and calculus and additional constructs. Widely used DML for relational databases.

QBE: Graphical query language.

Deductive Databases: Queries are logical rules.

65

RELATIONAL DATABASE LANGUAGES: COMPARISON AND OUTLOOK

Remark:

- Relational Algebra and (safe) Relational Calculus have the same expressive power.
 For every expression of the algebra there is an equivalent expression in the calculus, and vice versa.
- A query language is called **relationally complete**, if it is (at least) as expressive as the relational algebra.
- These languages are compromises between efficiency and expressive power; they are not computationally complete (i.e., they cannot simulate a Turing Machine).
- They can be embedded into host languages (e.g. C++ or Java) or extended (PL/SQL), resulting in full computational completeness.
- Deductive Databases (Datalog) are more expressive than relational algebra and calculus.

3.1 Relational Algebra: Computations over Relations

Operations on Tuples – Overview Slide

Let $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \ldots, A_k\}$.

(Formal definition of μ see Slide 59)

- For $\emptyset \subset \overline{Y} \subseteq \overline{X}$, the expression $\mu[\overline{Y}]$ denotes the **projection** of μ to \overline{Y} . Result: $\mu[\overline{Y}] \in \operatorname{Tup}(\overline{Y})$ where $\mu[\overline{Y}](A) = \mu(A), A \in \overline{Y}$.
- A selection condition α (wrt. X̄) is an expression of the form A θ B or A θ c, or c θ A where A, B ∈ X̄, dom(A) = dom(B), c ∈ dom(A), and θ is a comparison operator on that domain like e.g. {=,≠,≤,<,≥,>}.

A tuple $\mu \in \text{Tup}(\bar{X})$ satisfies a selection condition α , if – according to $\alpha - \mu(A) \theta \mu(B)$ or $\mu(A) \theta c$, or $c \theta \mu(A)$ holds.

These (atomic) selection conditions can be combined to formulas by using $\land,\lor,\neg,$ and (,).

• For $\overline{Y} = \{B_1, \ldots, B_k\}$, the expression $\mu[A_1 \to B_1, \ldots, A_k \to B_k]$ denotes the **renaming** of μ .

Result: $\mu[\ldots, A_i \to B_i, \ldots] \in \operatorname{Tup}(\bar{Y})$ where $\mu[\ldots, A_i \to B_i, \ldots](B_i) = \mu(A_i)$ for $1 \le i \le k$.

Let $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \ldots, A_k\}$.

Projection

For $\emptyset \subset \overline{Y} \subseteq \overline{X}$, the expression $\mu[\overline{Y}]$ denotes the **projection** of μ to \overline{Y} .

Result: $\mu[\bar{Y}] \in \operatorname{Tup}(\bar{Y})$ where $\mu[\bar{Y}](A) = \mu(A), \ A \in \bar{Y}$.

projection to a given set of attributes

Example 3.1

Consider the relation schema $R(\bar{X}) = continent(Name, Area): \bar{X} = [Name, Area]$ and the tuple $\mu =$ "Asia", 4.50953e+07 . formally: $\mu(Name) =$ "Asia", $\mu(Area) = 4.5E7$ projection attributes: Let $\bar{Y} = [Name]$ Result: $\mu[Name] =$ "Asia"

Again, $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \ldots, A_k\}$.

Selection

A selection condition α (wrt. \bar{X}) is an expression of the form $A \theta B$ or $A \theta c$, or $c \theta A$ where $A, B \in \bar{X}$, dom $(A) = \text{dom}(B), c \in \text{dom}(A)$, and θ is a comparison operator on that domain like e.g. $\{=,\neq,\leq,<,\geq,>\}$.

A tuple $\mu \in \text{Tup}(\bar{X})$ satisfies a selection condition α , if – according to $\alpha - \mu[A] \theta \mu[B]$ or $\mu[A] \theta c$, or $c \theta \mu[A]$ holds.

yes/no-selection of tuples (without changing the tuple)

Example 3.2

Consider again the relation schema $R(\bar{X}) = continent(Name, Area)$: $\bar{X} = [Name, Area]$.

Selection condition: *Area* > 10.000.000.

Consider again the tuple $\mu =$ "Asia", 4.50953e+07

formally: $\mu(Name) =$ "Asia", $\mu(Area) = 4.5E7$

check: $\mu(Area) > 10.000.000$

Result: yes.

These (atomic) selection conditions can be combined to formulas by using \land , \lor , \neg , and (,).

69

Let $\mu \in \operatorname{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \dots, A_k\}.$

Renaming

For $\bar{Y} = \{B_1, \dots, B_k\}$, the expression $\mu[A_1 \to B_1, \dots, A_k \to B_k]$ denotes the **renaming** of μ . Result: $\mu[\dots, A_i \to B_i, \dots] \in \text{Tup}(\bar{Y})$ where $\mu[\dots, A_i \to B_i, \dots](B_i) = \mu(A_i)$ for $1 \le i \le k$.

renaming of attributes (without changing the tuple)

Example 3.3

Consider (for a tuple of the table $R(\bar{X}) = encompasses(Country, Continent, Percent))$: $\bar{X} = [Country, Continent, Percent].$ Consider the tuple $\mu = \begin{bmatrix} \text{``R", ``Asia", 80} \\ \text{``Consider the tuple } \mu[Country) = \text{``R", } \mu(Continent) = \text{``Asia", } \mu(Percent) = 80$ Renaming: $\bar{Y} = [Code, Name, Percent]$ Result: a new tuple $\mu[Country \rightarrow Code, Continent \rightarrow Name, Percent \rightarrow Percent] = \begin{bmatrix} \text{``R", ``Asia", 80} \\ \text{``R", ``Asia", 80} \end{bmatrix}$ that now fits into the schema new_encompasses(Code, Name, Percent).

The usefulness of renaming will become clear later ...

EXPRESSIONS IN THE RELATIONAL ALGEBRA

What is an algebra?

- An algebra consists of a "domain" (i.e., a set of "things"), and a set of operators.
- Operators map elements of the domain to other elements of the domain.
- Each of the operators has a "semantics", that is, a definition how the result of applying it to some input should look like.
- Algebra expressions are built over basic constants and operators (inductive definition).

Relational Algebra

- The "domain" consists of all relations (over arbitrary sets of attributes).
- The operators are then used for combining relations, and for describing computations e.g., in SQL.
- Relational algebra expressions are defined inductively over relations and operators.
- Relational algebra expressions define queries against a relational database.

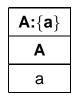
71

INDUCTIVE DEFINITION OF EXPRESSIONS

Atomic Expressions

For an arbitrary attribute A and a constant a ∈ dom(A), the constant relation A : {a} is an algebra expression.

Format: [A]Result relation: $\{a\}$



• Given a database schema $\mathbf{R} = \{R_1(\bar{X}_1), \dots, R_n(\bar{X}_n)\}$, every relation name R_i is an algebra expression.

Format of R_i : \bar{X}_i

Result relation (wrt. a given database state S): the relation $S(R_i)$ that is currently stored in the database.

Structural Induction: Applying an Operator
• takes one or more input relations in_1, in_2, \ldots
 produces a result relation <i>out</i>:
 <i>out</i> has a format, depends on the formats of the input relations.
 <i>out</i> is a relation, i.e., it contains some tuples, depends on the content of the input relations.

73

BASE OPERATORS

Let \bar{X}, \bar{Y} formats and $r \in \text{Rel}(\bar{X})$ and $s \in \text{Rel}(\bar{Y})$ relations over \bar{X} and \bar{Y} .

Union

Assume $r, s \in \operatorname{Rel}(\bar{X})$. Result format of $r \cup s$: \bar{X} Result relation: $r \cup s = \{\mu \in \operatorname{Tup}(\bar{X}) \mid \mu \in r \text{ or } \mu \in s\}.$

I	4	B	C			Б	a	-	A	B	C
r = -c	a	b	С	s =	A			$r \cup s =$	a	b	c f
		$a \\ b$	•				f		c	$b \\ g$	d

Set Difference

Assume $r, s \in \operatorname{Rel}(\bar{X})$. Result format of $r \setminus s$: \bar{X} Result relation: $r \setminus s = \{ \mu \in r \mid \mu \notin s \}$.

$$r = \frac{A \quad B \quad C}{a \quad b \quad c} \qquad s = \frac{A \quad B \quad C}{b \quad g \quad a} \qquad r \setminus s = \frac{A \quad B \quad C}{a \quad b \quad c}$$

75

Projection

Assume $r \in \operatorname{Rel}(\bar{X})$ and $\bar{Y} \subseteq \bar{X}$. Result format of $\pi[\bar{Y}](r)$: \bar{Y} Result relation: $\pi[\bar{Y}](r) = \{\mu[\bar{Y}] \mid \mu \in r\}.$

Example 3.4

Continent					
<u>Name</u>	Area				
Europe	9562489.6				
Africa	3.02547e+07				
Asia	4.50953e+07				
America	3.9872e+07				
Australia	8503474.56				

Let $\bar{Y} = [Name]$

$\mu_1[Name] =$	"Europe"
$\mu_2[Name] =$	"Africa"
$\mu_3[Name] =$	"Asia"
$\mu_4[Name] =$	"America"
$\mu_5[Name] =$	"Australia"

$\pi[Name](Continent)$
Name
Europe
Africa
Asia
America
Australia

Selection

Assume $r \in \text{Rel}(\bar{X})$ and a selection condition α over \bar{X} .

Result format of $\sigma[\alpha](r)$: \overline{X} Result relation: $\sigma[\alpha](r) = \{\mu \in r \mid \mu \text{ satisfies } \alpha\}.$

Example 3.5

Со	ntinent	Let $\alpha = "Area > 10.000.000"$			
Name Area				$\sigma[Area >$	10E6](Continent)
Europe	9562489.6	$\mu_1(Area) < 10.000.000$	no	<u>Name</u>	Area
Africa	3.02547e+07	$\mu_2(Area) > 10.000.000$	yes	Africa	3.02547e+07
Asia	4.50953e+07	$\mu_3(Area) > 10.000.000$	yes	Asia	4.50953e+07
America	3.9872e+07	$\mu_4(Area) > 10.000.000$	yes	America	3.9872e+07
Australia	8503474.56	$\mu_5(Area) < 10.000.000$	no		

77

Renaming

Assume $r \in \text{Rel}(\bar{X})$ with $X = [A_1, \dots, A_k]$ and a renaming $[A_1 \rightarrow B_1, \dots, A_k \rightarrow B_k]$.

Result format of $\rho[A_1 \to B_1, \dots, A_k \to B_k](r)$: $[B_1, \dots, B_k]$ Result relation: $\rho[A_1 \to B_1, \dots, A_k \to B_k](r) = \{\mu[A_1 \to B_1, \dots, A_k \to B_k] \mid \mu \in r\}.$

Example 3.6

Consider the renaming of the table encompasses(Country, Continent, Percent):

 $\bar{X} = [Country, Continent, Percent]$ Renaming: $\bar{Y} = [Code, Name, Percent]$

$\rho[Count$	$\rho[Country \rightarrow Code, Continent \rightarrow Name, Percent \rightarrow Percent]$ (encompasses)							
Code	Name	Percent						
R	Europe	20						
R	Asia	80						
D	Europe	100						
:		:						

ssume $r \in \operatorname{Rel}(X)$ and	$s \in \operatorname{Rel}(\bar{Y})$ for arbitrary	X, Y.	
	$ar{X}\cupar{Y}$, we also write \overline{XY} v_1,\ldots,v_n and $\mu_2=\overline{w_1}$	$\overline{v_1}$. , w_m , $\mu_1\mu_2 := v_1, \ldots, v_n, w_1, \ldots, w_n$	w_m
esult format of $r \bowtie s$: esult relation: $r \bowtie s =$	\overline{XY} . $\{\mu \in Tup(\overline{XY}) \mid \mu[\bar{X}] \in \mathbb{R}\}$	\cdot and $\mu[ar{Y}] \in s\}.$	
Motivation			
· _	$= \emptyset \Rightarrow \text{Cartesian Produc}$ $\overline{Y}) \mid \mu_1 \in r \text{ and } \mu_2 \in s \}.$		
$\times s = \{\mu_1 \mu_2 \in Tup(\overline{X}$	$\overline{Y}) \mid \mu_1 \in r \text{ and } \mu_2 \in s \}.$	A B C D	
$\times s = \{\mu_1 \mu_2 \in Tup(\overline{X}$	$\overline{Y}) \mid \mu_1 \in r \text{ and } \mu_2 \in s \}.$	$\begin{array}{c cccc} A & B & C & D \\ \hline 1 & 2 & a & b \end{array}$	
$\times s = \{\mu_1 \mu_2 \in Tup(\overline{X}$	$\overline{Y}) \mid \mu_1 \in r \text{ and } \mu_2 \in s \}.$	$\begin{array}{c cccc} A & B & C & D \\ \hline 1 & 2 & a & b \end{array}$	
$\times s = \{\mu_1 \mu_2 \in Tup(\overline{X}$	$\overline{Y}) \mid \mu_1 \in r \text{ and } \mu_2 \in s \}.$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
$T \times s = \{\mu_1 \mu_2 \in Tup(\overline{X})\}$		$\begin{array}{c cccc} A & B & C & D \\ \hline 1 & 2 & a & b \end{array}$	

Example 3.7 (Cartesian Product of Continent and Encompasses)

	Continent × encompasses							
Name	Area	Continent	Country	Percent				
Europe	9562489.6	Europe	Germany	100				
Europe	9562489.6	Europe	Russia	20				
Europe	9562489.6	Asia	Russia	80				
Europe	9562489.6	:	:	:				
Africa	3.02547e+07	Europe	Germany	100				
Africa	3.02547e+07	Europe	Russia	20				
Africa	3.02547e+07	Asia	Russia	80				
Africa	3.02547e+07	:	:	:				
Asia	4.50953e+07	Europe	Germany	100				
Asia	4.50953e+07	Europe	Russia	20				
Asia	4.50953e+07	Asia	Russia	80				
Asia	4.50953e+07	:	:	:				
:	:	:	:	:				

Back to the Natural Join

General Case $\overline{X} \cap \overline{Y} \neq \emptyset$: shared attribute names constrain the result relation.

Again the definition: $r \bowtie s = \{\mu \in \mathsf{Tup}(\overline{XY}) \mid \mu[\overline{X}] \in r \text{ and } \mu[\overline{Y}] \in s\}.$

Example 3.8

Consider encompasses(country,continent,percent) and is_member(organization,country,type):

e	encompasses	is_	member	
Country	Continent	Percent	Organization	Country
R	Europe	20	EU	D
R	Asia	80	UN	D
D	Europe	100	UN	R
:	:	:	:	:

 $encompasses \bowtie is_member = \{\mu \in Tup(country, cont, perc, org, type) \mid$

 $\mu[country, cont, perc] \in encompasses \text{ and } \mu[org, country, type] \in is_member\}$

Type

member

member

member

÷

81

Example 3.8 (Continued) $encompasses \bowtie is_member = \{\mu \in Tup(country, cont, perc, org, type) \mid$ $\mu[country, cont, perc] \in encompasses and \mu[org, country, type] \in is_member\}$ start with $(R, Europe, 20) \in encompasses$. check which tuples in *is_member* match: $(UN, R, member) \in is_member matches:$ result: (*R*, *Europe*, 20, *UN*, *member*) belongs to the result. (some more matches ...) continue with $(R, Asia, 80) \in encompasses$. $(UN, R, member) \in is_member matches:$ result: (R, Asia, 80, UN, member) belongs to the result. (some more matches ...) continue with $(D, Europe, 100) \in encompasses$. $(EU, D, member) \in is_member matches:$ result: (D, Europe, 100, EU, member) belongs to the result. $(UN, D, member) \in is_member matches:$ result: (D, Europe, 100, UN, member) belongs to the result. (some more matches ...)

Example 3.8 (Continued)

Result:

	encompasses × is_member						
Country	Continent	Percent	Organization	Туре			
R	Europe	20	UN	member			
R	Europe	20	:	:			
R	Asia	80	UN	member			
R	Asia	80	:	:			
D	Europe	100	UN	member			
D	Europe	100	EU	member			
D	Europe	100	:	:			
:	:	:	:	:			

83

Example 3.9 (and Exercise)

Consider the expression

 $continent \bowtie \rho[Country \rightarrow Code, Continent \rightarrow Name, Percent \rightarrow Percent](encompasses)$

Functionalities of the Join

- Combining relations
- Selective functionality: only matching tuples survive (consider joining cities and organizations on headquarters)

DERIVED OPERATORS

Intersection

Assume $r, s \in \operatorname{Rel}(\bar{X})$.

Then, $r \cap s = \{\mu \in \operatorname{Tup}(\bar{X}) \mid \mu \in r \text{ and } \mu \in s\}.$

Theorem 3.1

Intersection can be expressed by Difference: $r \cap s = r \setminus (r \setminus s)$.

Relational Division

Assume $r \in \text{Rel}(\bar{X})$ and $s \in \text{Rel}(\bar{Y})$ such that $\bar{Y} \subsetneq \bar{X}$. Result format of $r \div s$: $\bar{Z} = \bar{X} \setminus \bar{Y}$.

The result relation $r \div s$ is specified as "all \overline{Z} -values that occur in $\pi[\overline{Z}](r)$, with the additional condition that they occur in r together with each of the \overline{Y} values that occur in s".

Formally,

 $r \div s = \{ \mu \in \operatorname{Tup}(\bar{Z}) \mid \{ \mu \} \times s \subseteq r \} = \pi[\bar{Z}](r) \setminus \pi[\bar{Z}]((\pi[\bar{Z}](r) \times s) \setminus r).$ this implies that $\mu \in \pi[\bar{Z}](r)$

Simple observation: π[Z](r) ⊇ r ÷ s.
 This constrains the set of possible results.

85

Example 3.10 (Relational Division)

Compute all countries that belong both to Europe and to Asia:

ε	enc					
country	continent	continent				
R	Asia	Asia				
R	Europe	Europe				
IND	Asia					
D	Europe					
TR	Asia					
TR	Europe					
ET	Africa					
ET	Asia					
СН	Europe					
:	:					

Compute $enc \div cts$: $\bar{X} = [country, continent], \bar{Y} = [continent]$ Thus, $\bar{Z} = [country]$. Consider all values in $\pi[country](enc)$: Start with "R" $\in \pi[country](enc)$: for "Asia" $\in cts$: ("R", "Asia") $\in enc$. for "Europe" $\in cts$: ("R", "Europe") $\in enc$. OK. "R" belongs to the result. Continue with "IND" $\in \pi[country](enc)$: for "Asia" $\in cts$: ("IND", "Asia") $\in enc$. for "Europe" $\in cts$: ("IND", "Europe") $\notin enc$. "IND" does not belong to the result. : "TR" belongs to the result. "ET" does not belong to the result.

"CH" does not belong to the result.

Example 3.10 (Cont(d))

Consider again Example 3.10 and the formal algebraic characterization of Division:

 $r \div s = \{ \mu \in Tup(\bar{Z}) \mid \{ \mu \} \times s \subseteq r \} = \pi[\bar{Z}](r) \setminus \pi[\bar{Z}]((\pi[\bar{Z}](r) \times s) \setminus r).$

- 1. $r = belongs_to, s = continent, Z = Country.$
- 2. $(\pi[\overline{Z}](r) \times s)$ contains all tuples of countries with Europe and Asia, e.g., (Germany, Europe), (Germany, Asia), (Russia, Europe), (Russia, Asia)
- 3. $((\pi[\overline{Z}](r) \times s) \setminus r)$ contains all such tuples which are not "valid", e.g., (Germany,Asia).
- 4. projecting this to the countries yields all those countries where a non-valid tuple has been generated in (2), i.e., which do not belong both to Europe and Asia.
- 5. $\pi[\overline{Z}](r)$ is the list of all countries ...
- 6. ... subtracting those computed in (4) yields those that belong both to Europe and Asia. \Box

87

θ -Join

Combination of Cartesian Product and Selection:

Assume $r \in \text{Rel}(\bar{X})$, and $s \in \text{Rel}(\bar{Y})$, such that $\bar{X} \cap \bar{Y} = \emptyset$, and $A \theta B$ a selection condition.

 $r \bowtie_{A\theta B} s = \{\mu \in \mathsf{Tup}(\overline{XY}) \mid \mu[\bar{X}] \in r, \ \mu[\bar{Y}] \in s \text{ and } \mu \text{ satisfies } A\theta B\} = \sigma[A\theta B](r \times s).$

Equi-Join

 θ -join that uses the "="-predicate.

Example 3.11 (and Exercise)

Consider again Example 3.7:

 $Continent \times encompasses$ contained tuples that did not really make sense.

 $(Continent \times encompasses)_{continent=name}$ would be more useful.

Furthermore, consider

 $\pi[continent, area, code, percent]((Continent \times encompasses)_{continent=name}):$

- removes the now redundant "name" column,
- is equivalent to the natural join $(\rho[name \rightarrow continent]continent) \bowtie encompasses.$

SEVERAL EXTENSIONS OF THE JOIN

• Join is the operator for combining relations

Example 3.12

Consider a completely different database now for investigating joins.

- Persons work in divisions of a company
- Tools are assigned to the divisions

И	/orks		
Person	Division	Tools	
John	Production	Division	ΤοοΙ
Bill	Production	Production	hammer
John	Research	Research	pen
Mary	Research	Research	computer
Sue	Sales	Administration	typewriter

89

Example 3.12 (Continued)

Consider the join of both tables:

Works		
Person	Division	
John	Production	
Bill	Production	
John	Research	
Mary	Research	
Sue	Sales	

Tools			
Division	ΤοοΙ		
Production	hammer		
Research	pen		
Research	computer		
Admin.	typewriter		

Works 🖂 Tools			
Person	Division	ΤοοΙ	
John	Production	hammer	
Bill	Production	hammer	
John	Research	pen	
John	Research	computer	
Mary	Research	pen	
Mary	Research	computer	

- there is no tuple that describes Sue
- there is no tuple that describes the administration or sales division
- there is no tuple that shows that there is a typewriter

Semi-Join

Assume $r \in \operatorname{Rel}(\bar{X})$ and $s \in \operatorname{Rel}(\bar{Y})$ such that $\bar{X} \cap \bar{Y} \neq \emptyset$.

Result format: \bar{X}

Result relation: $r \bowtie s = \pi[\bar{X}](r \bowtie s)$

The semi-join $r \bowtie s$ does *not* return the join, but checks which tuples of r "survive" the join with s (i.e., "which find a counterpart in s wrt. the shared attributes"):

Example 3.13

Consider again Example 3.12:

Works	K Kools		
Person	Division	Works >>> Tools	
John	Production	Division	ΤοοΙ
Bill	Production	Production	hammer
John	Research	Research	pen
Mary	Research	Research	computer

• Semijoins are e.g. used for optimizing the evaluation of multiple joins. [see lecture on Database Theory]

91

Outer Join

Assume $r \in \operatorname{Rel}(\bar{X})$ and $s \in \operatorname{Rel}(\bar{Y})$.

Result format of $r \exists \bowtie v s: \overline{XY}$

The outer join extends the "inner" join with all tuples that have no counterpart in the other relation (filled with null values):

Example 3.14 (Outer Join)

Consider again Example 3.12

Works ⊐⋈⊏ Tools			
Person	Division	ΤοοΙ	
John	Production	hammer	
Bill	Production	hammer	
John	Research	pen	
John	Research	computer	
Mary	Research	pen	
Mary	Research	computer	
Sue	Sales	NULL	
NULL	Admin	typewriter	

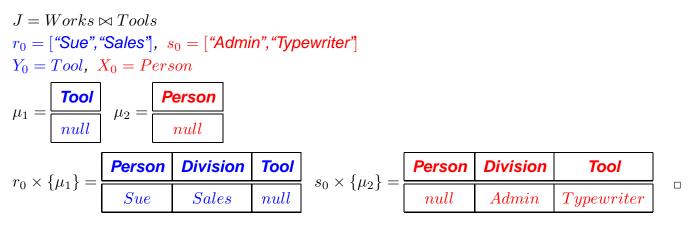
Formally, the result relation is defined as follows:

$$\begin{split} J &= r \bowtie s - \text{take the ("inner") join as base} \\ r_0 &= r \setminus \pi[\bar{X}](J) = r \setminus r \bowtie s - r\text{-tuples that "are missing"} \\ s_0 &= s \setminus \pi[\bar{Y}](J) = s \setminus r \bowtie s - s\text{-tuples that "are missing"} \\ Y_0 &= \bar{Y} \setminus \bar{X}, X_0 = \bar{X} \setminus \bar{Y} \\ \text{Let } \mu_1 \in \text{Tup}(Y_0), \mu_2 \in \text{Tup}(X_0) \text{ such that } \mu_1, \mu_2 \text{ consist only of } null \text{ values} \end{split}$$

 $r \, \exists \bowtie \sqsubseteq \, s = J \cup (r_0 \times \{\mu_1\}) \cup (s_0 \times \{\mu_2\}).$

Example 3.14 (Continued)

For the above example,



Generalized Natural Join

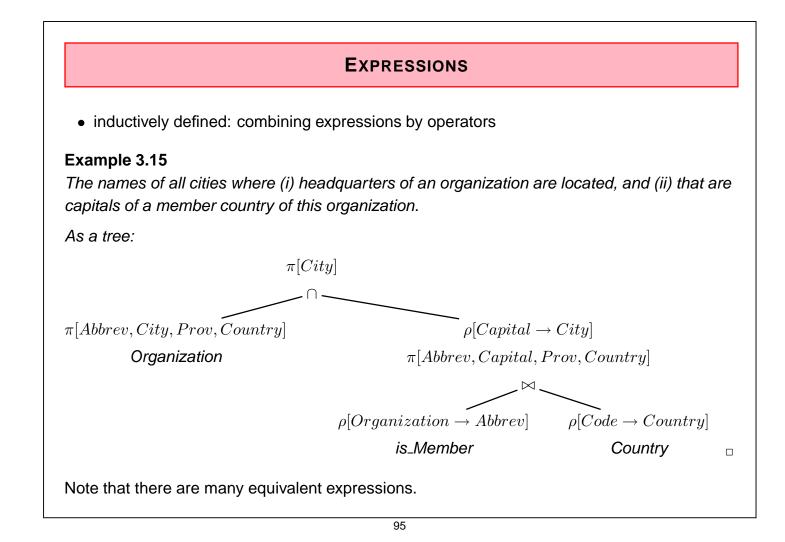
Assume $r_i \subseteq \operatorname{Tup}(\bar{X}_i)$.

Result format: $\cup_{i=1}^{n} \bar{X}_i$ Result relation: $\bowtie_{i=1}^{n} r_i = \{\mu \in \mathsf{Tup}(\cup_{i=1}^{n} \bar{X}_i) \mid \mu[\bar{X}_i] \in r_i\}$

Exercise 3.1

Prove that the natural join is commutative (which makes the generalized natural join well-defined):

$$\bowtie_{i=1}^{n} r_{i} = ((\dots ((r_{1} \bowtie r_{2}) \bowtie r_{3}) \bowtie \dots) \bowtie r_{n}))$$
$$= (r_{1} \bowtie (r_{2} \dots (r_{n-1} \bowtie r_{n}) \dots))$$

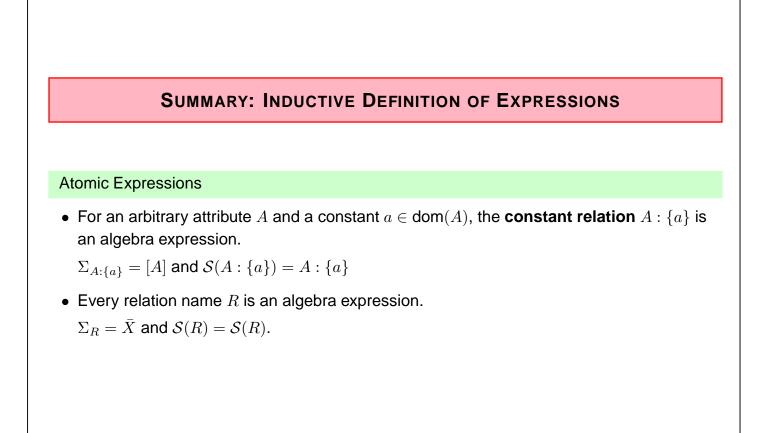


EXPRESSIONS IN THE RELATIONAL ALGEBRA AS QUERIES

Let $\mathbf{R} = \{R_1, \dots, R_k\}$ a set of relation schemata of the form $R_i(\bar{X}_i)$. As already described, an **database state** to \mathbf{R} is a **structure** S that maps every relation name R_i in \mathbf{R} to a relation $S(R_i) \subseteq \text{Tup}(\bar{X}_i)$

Every algebra expression Q defines a **query** against the state S of the database:

- For given \mathbf{R} , Q is assigned a **format** Σ_Q (the format of the answer).
- For every database state S, S(Q) ⊆ Tup(Σ_Q) is a relation over Σ_Q, called the answer set for Q wrt. S.
- S(Q) can be computed according to the inductive definition, starting with the innermost (atomic) subexpressions.
- Thus, the relational algebra has a functional semantics.



97

SUMMARY (CONT'D)

Compound Expressions

Assume algebra expressions Q_1, Q_2 that define $\Sigma_{Q_1}, \Sigma_{Q_2}, \mathcal{S}(Q_1)$, and $\mathcal{S}(Q_2)$.

Compound algebraic expressions are now formed by the following rules (corresponding to the algebra operators):

Union

If $\Sigma_{Q_1} = \Sigma_{Q_2}$, then $Q = (Q_1 \cup Q_2)$ is the **union** of Q_1 and Q_2 .

 $\Sigma_Q = \Sigma_{Q_1} \text{ and } \mathcal{S}(Q) = \mathcal{S}(Q_1) \cup \mathcal{S}(Q_2).$

Difference

If $\Sigma_{Q_1} = \Sigma_{Q_2}$, then $Q = (Q_1 \setminus Q_2)$ is the **difference** of Q_1 and Q_2 .

 $\Sigma_Q = \Sigma_{Q_1} \text{ and } \mathcal{S}(Q) = \mathcal{S}(Q_1) \setminus \mathcal{S}(Q_2).$

Projection

For $\emptyset \neq \bar{Y} \subseteq \Sigma_{Q_1}$, $Q = \pi[\bar{Y}](Q_1)$ is the **projection** of Q_1 to the attributes in \bar{Y} . $\Sigma_Q = \bar{Y}$ and $S(Q) = \pi[\bar{Y}](S(Q_1))$.

INDUCTIVE DEFINITION OF EXPRESSIONS (CONT'D)

Selection

For a selection condition α over Σ_{Q_1} , $Q = \sigma[\alpha]Q_1$ is the **selection** from Q_1 wrt. α .

 $\Sigma_Q = \Sigma_{Q_1} \text{ and } \mathcal{S}(Q) = \sigma[\alpha](\mathcal{S}(Q_1)).$

Natural Join

 $Q = (Q_1 \bowtie Q_2)$ is the **(natural) join** of Q_1 and Q_2 .

 $\Sigma_Q = \Sigma_{Q_1} \cup \Sigma_{Q_2}$ and $\mathcal{S}(Q) = \mathcal{S}(Q_1) \bowtie \mathcal{S}(Q_2)$.

Renaming

For $\Sigma_{Q_1} = \{A_1, \ldots, A_k\}$ and $\{B_1, \ldots, B_k\}$ a set of attributes, $\rho[A_1 \to B_1, \ldots, A_k \to B_k]Q_1$ is the **renaming** of Q_1

 $\Sigma_Q = \{B_1, \ldots, B_k\}$ and $\mathcal{S}(Q) = \{\mu[A_1 \to B_1, \ldots, A_k \to B_k] \mid \mu \in \mathcal{S}(Q_1)\}.$

99

Example

Example 3.16

Professor(PNr, Name, Office), Course(CNr, Credits, CName) teach(PNr, CNr), examine(PNr, CNr)

• For each professor (name) determine the courses he gives (CName).

 π [Name, CName] ((Professor \bowtie teach) \bowtie Course)

 For each professor (name) determine the courses (CName) that he teaches, but that he does not examine.

 $\pi[\mathsf{Name}, \mathsf{CName}]((\\ (\pi[\mathsf{Name}, \mathsf{CNr}](\mathsf{Professor} \bowtie \mathsf{teach})) \\ \\ (\pi[\mathsf{Name}, \mathsf{CNr}](\mathsf{Professor} \bowtie \mathsf{examine})) \\) \bowtie \mathsf{Course})$

Simpler expression:

 π [Name, CName] ((Professor \bowtie (teach \setminus examine)) \bowtie Course)

EQUIVALENCE OF EXPRESSIONS

Algebra expressions Q, Q' are called **equivalent**, $Q \equiv Q'$, if and only if for all structures S, S(Q) = S(Q').

Equivalence of expressions is the basis for algebraic optimization.

Let attr(α) the set of attributes that occur in a selection condition α , and Q, Q_1, Q_2, \ldots expressions with formats X, X_1, \ldots .

Projections

- $\bar{Z}, \bar{Y} \subseteq \bar{X} \Rightarrow \pi[\bar{Z}](\pi[\bar{Y}](Q)) \equiv \pi[\bar{Z} \cap \bar{Y}](Q).$
- $\bar{Z} \subseteq \bar{Y} \subseteq \bar{X} \Rightarrow \pi[\bar{Z}](\pi[\bar{Y}](Q)) \equiv \pi[\bar{Z}](Q).$

Selections

- $\sigma[\alpha_1](\sigma[\alpha_2](Q)) \equiv \sigma[\alpha_2](\sigma[\alpha_1](Q)) \equiv \sigma[\alpha_1 \land \alpha_2](Q)).$
- $\operatorname{attr}(\alpha) \subseteq \bar{Y} \subseteq \bar{X} \Rightarrow \pi[\bar{Y}](\sigma[\alpha](Q)) \equiv \sigma[\alpha](\pi[\bar{Y}](Q)).$

Joins

- $Q_1 \bowtie Q_2 \equiv Q_2 \bowtie Q_1.$
- $(Q_1 \bowtie Q_2) \bowtie Q_3 \equiv Q_1 \bowtie (Q_2 \bowtie Q_3).$

101

EQUIVALENCE OF EXPRESSIONS (CONT'D)

Joins and other Operations

- $\operatorname{attr}(\alpha) \subseteq \bar{X}_1 \cap \bar{X}_2 \Rightarrow \sigma[\alpha](Q_1 \bowtie Q_2) \equiv \sigma[\alpha](Q_1) \bowtie \sigma[\alpha](Q_2).$
- $\operatorname{attr}(\alpha) \subseteq \bar{X}_1, \operatorname{attr}(\alpha) \cap \bar{X}_2 = \emptyset \Rightarrow \sigma[\alpha](Q_1 \bowtie Q_2) \equiv \sigma[\alpha](Q_1) \bowtie Q_2.$
- Assume $V \subseteq \overline{X_1 X_2}$ and let $W = \overline{X_1} \cap \overline{VX_2}$, $U = \overline{X_2} \cap \overline{VX_1}$. Then, $\pi[V](Q_1 \bowtie Q_2) = \pi[V](\pi[W](Q_1) \bowtie \pi[U](Q_2));$
- $\bar{X}_2 = \bar{X}_3 \Rightarrow Q_1 \Join (Q_2 \text{ op } Q_3) = (Q_1 \bowtie Q_2) \text{ op } (Q_1 \bowtie Q_3) \text{ where } \text{ op } \in \{\cup, -\}.$

Exercise 3.2

Prove some of the equalities (use the definitions given on the "Base Operators" slide).

EXPRESSIVE POWER OF THE ALGEBRA

Transitive Closure

The transitive closure of a binary relation R, denoted by R^* is defined as follows:

$$\begin{array}{rcl} R^1 &=& R\\ R^{n+1} &=& \{(a,b)| \text{ there is an } s \text{ s.t. } (a,x) \in R^n \text{ and } (x,b) \in R \}\\ R^* &=& \displaystyle \bigcup_{1..\infty} R^n \end{array}$$

Examples:

- child(x,y): child* = descendant
- flight connections
- flows_into of rivers in MONDIAL

Theorem 3.2

There is no expression of the relational algebra that computes the transitive closure of arbitrary binary relations r.

103

EXAMPLES

Time to play. Perhaps postpone examples after comparison with SQL (next subsections)

Aspects

- join as "extending" operation (cartesian product "all pairs of X and Y such that ...")
- equijoin as "restricting" operation
- natural join/equijoin in many cases along key/foreign key relationships
- relational division (in case of queries of the style "return all X that are in a given relation with all Y such that ...")