
A Database-Based Service for Handling
Logical Variable Bindings

Wolfgang May

Institut für Informatik, Universität Göttingen,
Germany

may@informatik.uni-goettingen.de

DaaS 2009, Münster, Germany
March 3rd, 2009



MARS
Modular Active Rules on the Semantic Web

Rule-based description of behavior in the Semantic Web

Paradigm: ECA Rules
“On Event check Condition and then do Action”

subontologies/-languages for specifying Events,
Conditions, Actions,

modular, declarative specification

data flow by logical variables (i.e., sets of tuples ...)

services that implement these sublanguages.

analogous/(sub)language: CCS with relational data flow



Modular ECA Concept: Rule Structure

Rule Model ECARule ECAEngine

EventComponent ConditionComponent ActionComponent

Query
Component

Test
Component

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model
Language

Name

URI

Processor

1 0..1 1..*

* 1

�

�

�

�

↓uses ↓uses ↓uses ↓uses

impl by

impl by



Binding and Use of Variables in ECA Rules
action(X1, . . . ,Xn)←

event(X1, . . . ,Xk), query(X1, . . . ,Xk, . . .Xn), test(X1, . . . ,Xn)

<eca:Event>
event component
binds X1, . . . ,Xk
</eca:Event>

⇒

<eca:Query>

query component
over X1, . . . ,Xk, . . . ,Xn
join vars: X1, . . . ,Xk
binds Xk+1, . . . ,Xn
</eca:Query>

⇒
<eca:Test>
over X1, . . . ,Xn
</eca:Test>

⇒

<eca:Action>

action comp.
uses X1, . . . ,Xn
</eca:Action>

(Composite)
Event
Detection
Engine

Query Engine
Action/
Process
Engine

Web/Deep Web Data Sources and Services

register
event

comp.

upon
detection:
result
variables

send
query,

receive
result

send
action,
+ vars



Control Flow and Communication

Control flow moves from one processor/service to the other.
Data exchange:

the respective fragment

(projection of) the current set of variable bindings

Answers:

usually a set of variable bindings (→ join)

existing variable bindings ./ new variable bindings

Query Service

query answers

relevant input variables
π

DAS09 4



Requirements

ECA rules: small number of tuples

(query) workflows (specified in CCS with relational data
flow), e.g. Deep Web querying: high number of tuples

Data exchange between services located at different
locations
closer look: some services (ECA, CCS) do not actually
need to have the variable bindings locally, but only to apply
operations on them!

operations: projection, join
clone (concurrent execution)
delete (exclusive guarded nondeterministic alternative)

dynamic schema (variable names + datatypes)

DAS09 5



Implementation Alternatives

a Java class VariableBindings based on in-memory data
structure

actual exchange of data, working locally,

sufficient for small amounts of data.

VariableBindings class uses a local database via JDBC.

still actual exchange of data, working locally,

requires local DB installation.

... or use a Database as a Service:

DAS09 6



Variable Bindings Service (VBS)

Separate (remote) Variable Bindings Service (VBS),

provides the interface of the abstract datatype and uses its
own database,

no data exchange, but cooperation on the data in the
database,

VariableBindings class is then only a stub that forwards its
methods to the Web Service.

DAS09 7



Polymorphism/Separation of Tasks

Choice and dynamic, transparent switching between
MemoryVarBindings and DBVarBindings:

schema/variable information maintained preferably in the
Java part.

Java: not as subclasses (instance cannot change class
membership), but class with delegation.

VariableBindings provides the common functionality (metadata
management, API of the abstract datatype)

data member myVariableBindings that is either an instance
of MemoryVariableBindings or of DBVariableBindings

these are implementations of an interface VariableBindingsImpl

that is only concerned with the storage issue and the actual
operations.DAS09 8



Final Design: DBVariableBindings

access to actual VBS by DBVariableBindings via JDBC

SQL statements dynamically generated and submitted to
database.

service config:

± DB available, optional: preferred “own” JDBC
URL/user/passwd

threshold: size for switching to DB-VB

services can also (read-)access foreign VBS via JDBC
(communicate URL/user/passwd)

DAS09 9



Final Design

Some Language Processor
(e.g. ECA Engine or CCS Engine)

Java Class:
VariableBindings

Java Class:
Memory-
Variable-
Bindings

Java Class:
DBVariable-
Bindings

VBS
JDBC

DAS09 10



DBVariableBindings

attributes mytablename, jdbcURI/user/pwd

DBVariableBindings())

DBVariableBindings(MemoryVariableBindings vb)

addTuple(Tuple t):

unary relational operations:

projection: ALTER TABLE t DROP COLUMN variable,

selection: DELETE FROM t WHERE NOT selection condition,

bindInAllTuples(name, value): adds a new variable with a
given value to all tuples:
ALTER TABLE t ADD var datatype DEFAULT value;
ALTER TABLE t MODIFY COLUMN var DEFAULT NULL;

iterator getTuples() (VarBindings implements Iterable).

DAS09 11



Binary Relational Operations

preparing step before (switch both to DB or both to
Memory),

transparent for the outside service

natural join: create a new table that contains the result:
INSERT INTO tnew

(SELECT * FROM t, t ′ WHERE equality of all shared variables)

and set mytablename to the new table name;

union: add tuples given in main memory representation, or
the contents of a complete table,

minus (as removeMatchingBindings(other)):
DELETE FROM t WHERE EXISTS

(SELECT * FROM t ′ WHERE equality of all shared variables);

DAS09 12



Distributed Usage

communication of variable bindings: exchange reference to
VBS

<variable-bindings database=“ f (jdbc-uri, user, password)”

tablename=“tablename”/>

constructor from the above XML communication format
(creates just a “small” DBVariableBindings stub instance)

DAS09 13



Distributed Usage

Service S1 doing some task ...

step1 step2 step3: <query(x1,x2)>

done by Service S2

step4

called Service S2:

execute <query(x1,x2)>

VariableBindingsService

./

π[x1,x2]

CREATE
TABLE ...
INSERT ...

some SQL

via JDBC

<call <query> with ref. to •>

proj. to input vars
<return with ref. to •>



Some SQL Details

Case-Sensitive and Other Column Names

SQL column names usually case-insensitive.

variable names usually case-sensitive, all symbols allowed
column names:
CREATE TABLE MARS VARS xyz (“varname”
VARCHAR2(20));

SQL XMLType: No Comparison, no Join

use MemoryVariableBindings

DAS09 15



Related Work

Frequently Asked Question:
What about Tuple Spaces/TSpaces?

unstructured set of tuples of arbitrary schema
MARS: sets of homogeneous relations

insert, associative access (read, delete)

no support for operations on relations/sets

DAS09 16



Summary

Database for storing and manipulating sets of tuples of
variable bindings

Access by JDBC

MARS Demonstrator
http://www.semwebtech.org/mars/frontend/

Thank You

Questions?

DAS09 17

http://www.semwebtech.org/mars/frontend/

	Large 
	MARS
	Modular ECA Concept: Rule Structure
	Binding and Use of Variables in ECA Rules
	Control Flow and Communication
	Requirements
	Implementation Alternatives
	Variable Bindings Service (VBS)
	Polymorphism/Separation of Tasks
	Final Design: DBVariableBindings
	Final Design
	DBVariableBindings
	Binary Relational Operations
	Distributed Usage
	Distributed Usage
	Some SQL Details
	Related Work
	Summary

