A Database-Based Service for Handling Logical Variable
Bindings

Wolfgang May
Institut fur Informatik, Universitat Gottingen, Germa
may@informatik.uni-goettingen.de

Abstract: The paper discusses the use afatabase as a servidbat supports applications

whose data flow is based on sets of tuples of variable binda®s.g., in logic-based frame-
works like Datalog and similar rule-based approaches. €hédce also supports cooperative
work of different services on the bindings, thus replaclmgnieed for actual exchange of po-
tentially large sets of data during workflows. The concres@ge scenario of the service is in
a distributed environment for processing ECA (Event-CtadiAction) rules and processes
over relational states.

1 Introduction

Several applications and languages use logic programntyihey\gariables for their data
flow. The actual state of such an application is represergdeaiset of tuples of variable
bindings, i.e., a (potentially large) relation. The comnfienctionality for manipulating
this information can be seen as abstract datatypehat provides constructors and the
usual operations of the relational algebra. As applicaticem handle large quantities of
data, a realization of the datatype adadabase servicis appropriate. Such a service can
not only handle bindings for being processed by an indiMidpalication, but also serve
as a central storage that repladesa exchangbetween applications.

The functionality of the abstract datatype for logical esate bindings does not only con-
sist of the manipulation/combination of the actual tuplas€rms of applying SQL com-
mands), but also has to consider the format of the relationsanslate the required op-
erations into SQL commands. For instance, the join of twe eétuples is not only an
SQL query over two relations, but first requires to go throtlghvariable lists of both,
and identify the join variables tconstructthe appropriate SQL statement.

Structure of the paper. We first give a formal definition of the concept vériable
bindingsand discuss possible implementation alternatives as @ngtaroint. Section 3
introduces the actual usage scenario in a distributed Webcgeenvironment. Section 4
discusses the design and usage of the service. Some sp&lifis&ies are picked up in
Section 5; a short conclusion follows.



2 Variable Bindings — the Concept

Sets of tuples of variable bindings are a common conceptgitdbased approaches,
like Datalog. Consider a 5-ary predicateuntry/5 that holds for the name, the country
code, the area, population, and name of the capital of ciesh&.g., for Germangoun-
try(“Germany”, “D”, 356910,83536115, “Berlin”). Then, the simple Datalog query

?- country(N, C, A, P, Cap).

binds the variabled/, C', A, P, andCap and results in a set of tuples afiswer bindings
(one tuple for each country)

{{N/“Germany”, C/“D", AI356910, P/*83526115", Cap/“Berlin” }
{N/“France”, C/“F", A/547030, P/*58317450", Cap/“Paris” }, ...}

which can be interpreted as a relation with attribiteg, A, P, andCap. Consider another
predicatecity/3 that holds for a city name, the country code where it is latagend its
population, e.g.¢ity(“Berlin”, “D”, 3472009). Then, the evaluation of conjunctive queries,
like

?- country(N, C, A, P, Cap), city(CityN, C, CityP).

consists of goin of two such relations, where the common variaBlacts as join variable.

As known from Datalog, (safe) negation is implemented bydgétrence (together with a

projection), and built-in predicates are implemented bgct®ns. Furthermore, grouping,
ordering (and top-k), and some other operators are common.

Definition1 A set of tuples of variable bindings consists of (i) a format
{vanr, : Dy,..., Var, : D,} (the variable name¥ar; with datatyped;), and (ii) a set of

tuplesry, ..., 7, where eachr; is a (possibly partial) mapping; : (Van, ..., Var,) —
(D1 U{null}) x ... x (D U{null}).
A set of tuples can thus be seen as a relafibwith attribute namedar, . .., Var,.

The size of variable bindings needed in a workflow vary fronngle tuple over a small
number of variables up to potentially millions of tupleghalugh usually still over a rel-
atively small number of variables (often even less than IXgvertheless, the concept
should be able to support also bindings of a large numberridivas.

So far, there are several straightforward implementatimreatives:

1. Provide and import an appropriate Java cl&s@bleBindings that uses an in-memory
data structure. This choice is sufficient for small amoufttata.

2. Another possibility is that theariableBindings class uses a local database via JDBC.

3. The third possibility is to use a (remote) Web Service ghavides the interface of the
abstract datatype and usesown database. TheariableBindings class is then only a
stub that forwards its methods to the Web Service.

While (1) is actually restricted to small amounts of datg, lfas the disadvantage that
it would require each service that uses the class to be eedipfith a local database



installation. A disadvantage of (3) is that even for smallbamts of data (extreme, but
frequent case: only one tuple is propagated through thécapipin) the database service
is contacted.

Further drawbacks of (3) are less obvious, but showed up whbesidering what the ac-
tual implementation would look like. As described abovearafrom the actual relational
operations that can be done in SQL, the abstract datatypsohas functionality for main-
taining and manipulating the format, i.e., the columnsfaites list and the datatypes, and
constructing the SQL queries as strings, which requirasdptogramming and persistent
storage of the metadata. Realizing this inside the datdhaB&/SQL is cumbersome. Al-
ternatively it can be implemented in the Java layer that @m@nts the service interface
and then communicates by JDBC with the actual database. aftiee alternative already
suggests to consider to move this functionality away froem\ifeb Service, into the stub
VariableBindings class that is directly imported in the client services — amchmunicate
from there with the database via JDBC.

The communication interfaces of Web Services are usualigdban XML. The variable
bindings can thus either be communicated in XML markup (tied already defined for
the given use case), or an instance of YaeiableBindings Java class is exchanged via
SOAP. As the latter is inefficient, only the plain XML choicennains. XML data is un-
typed, so when exchanging variable bindings in explicit Xkkmat, a datatype conver-
sion has to take place twice. Thus, it is preferable not tdhamge the actual variable
bindings at all, but just to exchange a reference to a tablerevkhey are stored in a
database.

Next, we discuss the environment that lead to the developofehe service, its specific
requirements, and its actual design decisions.

3 MARS

The service has been developed for use inMloglular Active Rules in the Semantic Web
(MARS)framework. MARS is an open infrastructure for ECA rules amdcpsses that
involve multiple services and languages. For each comparfemrule or a process, the
rule designer can choose amongst an (open) set of appefaiajuages. For instance,
the event specification can be a composite event expressithreiSnoop event algebra
[CKAK94], which in turn embeds specifications of the relevatomic events in —again—a
different language; and the action component can be exgn@ssheCalculus of Commu-
nicating Processes (CC®rocess Algebra [Mil83]. The markup of rules is in XML, with
the components embedded as XML subtrees. An ECA rule engimbéen implemented
[BFMSO06]; every component language is also implementedlnyesprocessor as a Web
Service. The communication between the Web services fazugxg rules is done by
HTTP messages that contain the fragment to be executed andtiable bindings. The
HTTP URIs and other metadata for finding an addressing psocg$or given language
fragments are managed bgnguage and Service Registries (LSRs)

Figure 1 (from [MAAOS5]) illustrates the structure of the egland the corresponding types
of languages.



Rule Model _ECARuIe
1 O g

| |
| |
| |
| |
: EventComponentl | ConditionComponentl | ActionComponentI :
[ |
| Tt |
! Quer%/ Test :
| Component Component |
R yiuses _Jusey | _____. luses ____ yluses ___
I Event Query Test Action I
: Language Language Language Language :
i Languages Model " ?_anguagbe - P i
[ [

Figure 1: ECA Rule Components and Corresponding Langudigea [MAAO5])

Variable Bindings in MARS ECA Rules. Coming back to the issue of the current paper,
the data flow is managed in terms of logical variables in thle if production rules. The
state of evaluation consists of a set of tuples of variabidibigs (cf. Figure 2):

action(X1, ..., Xn,..., Xg) <«
event(Xy, ..., Xn), query(Xy,..., Xn, ..., Xk), test(Xq,..., Xn, ..., Xi) .

The evaluation of the event component (i.e., the detecfia{composite) event) results in
a set of tuples of variable bindings that is then extendetérquery component, possibly
constrained in the test component, and propagated to tlomacmponent. The SNOOP
and CCS languages have also been extended with internédneledata flow [BFMSO08].

Example 1 (ECA Rules and Variable Bindings) Consider a simple rule like (the syntax
is not the full MARS one, but just for sketching the main ijleas

ON <travel:FlightDelayed travel:flight="F" travel:minutes="X"/>
WHERE F = “LH123"
DO send_sms(0049-0815,“your flight is X minutes delayed”)

When a matching eventravel:FlightDelayed travel:flight="LH123" travel:minutes="30"/>
occurs, one tuple of variable bindings is generated by trenedetection service, i.e.,
(F/*LH123", X/30). It is propagated through the rule engine, the conditionlestes to
true, and it is forwarded to the action processor that sefm#s3MS.

Another rule,
ON <travel:FlightCanceled travel:flight="F"/>

WHERE nearbyHotel(H) and price(H,P)
DO book the hotel H that has the lowest price

will again bind a single tuple in the event part, and exterids to about 5-10 tuples over
variablesF' (that has the same value for all tuplegj,and P in the query part.



<eca:Query>
<eca:Event> query component ovef | <eca:Test> <eca:Action>
event component N X1, Xy, ., Xy _| over N action componen
bindsXy,..., X, {?mvars: Xq,..., X, Xq,..., X, usesXy,..., Xg
</eca:Event> indsX,,+1,...,Xg </eca:Test> </eca:Action>
7y <leca:Query>
register gggenction: A send
event result send| receive action
Component variables query result +vars
Y v Y
Composite) Event . Action/Process
Eetecrt)ion E%lgine Query Engine Engine

| existing variable bindingisN /§N| new variable bindingls
relevant input variablex /

Query Service

query answerk

Figure 2: Use of Variables in an ECA Rule

In the above example cases, there is no need for a databe®e sbut an in-memory Java
data structure is sufficient, and even faster than the corwation overhead by JDBC

with a database. Only if the queries (there can be a sequdrmpeedes) return many

tuples, the use of a database pays. The only operators @bleatindings needed so far
are joins, selection (for the test) and projection (for poting on the required input tuples
for the individual subqueries).

The prototype of the ECA engine has been developed in [BFNI&W®& a JavaVari-
ableBindings class that implements the common functionality for harglBets of tuples
of variable bindings. The communication between the sesyice., back from the event
detection service to the ECA engine, then to the query esgamel back, and then to
the action processor is realized in XML markup of the vaeatihdings according to the
following DTD:

<! ELEMENT vari abl e- bi ndi ngs (tupl e*)>
<! ELEMENT tuple (variabl e*)>
<! ELEMENT vari abl e ANY>
<! ATTLI ST vari abl e nane CDATA #REQUI RED>

The content of theariable element is either text-only (for strings and numbers) orfwan
an XML fragment.

Variable Bindings in MARS CCS Processes. For expressing the action part of ECA
rules, theCalculus of Communicating Processes (CE8)cess Algebra [Mil83] has been



extended with relational data flow, i.e., sets of tuples ofalde bindings are propagated
through the process. As a language of the MARS framework, @iG8esses can embed
subprocesses from arbitrary languages.

Here, the operations on such sets of tuples are more invttheexin the relatively simple
linear data flow of ECA rules: CCS provides alternatives (whee branch executes for
some tuples, these tuples have to be removed from the othecles), parallel execution
with join (wait until all branches come back, where the salopsses can even be asyn-
chronous and patrtial, i.e., some tuples proceed fasterdtiems due to external queries),
and safe negation (tuples that match bindings returned bpprecess are removed).

Furthermore, standalone CCS processes (i.e., not onlytiag gart of ECA rules) showed
to be useful for specifiyinguery workflowsgainst (Deep) Web sources, which turned out
to develop into a separate subproject. Here, the embeddgdaaesses are atomic sub-
processes in form of queries in tideep Web Query Language (DWQihpat acts as a
wrapper for the tool described in [HSLO8]. In this case, tifges of (input) variable bind-
ings are communicated to the DWQL service, and the resudlihys are communicated
back to the CCS service. Here, queries return large numléuples (e.g., for a graph
exploration workflow that computdsrdds numbersi.e., minimal coauthoring distance,
based on DBLP), so the need for development of a databaselbasdling of variable
bindings became apparent.

4 Design of the Service and its Usage

4.1 Requirements

The above use cases provided the base for analyzing theeetgiits in this setting where
distributed, autonomous services cooperate based on tiadesbindings:

1. All types of language services (event detection, proakgsbra processors, query en-
gines, ECA rule engines) must have access to the functtgnali

2. The database(s) should not be local to the processorthéulata flonbetweerthe
processors should breplacedby cooperation via the envisaged autonomdasable
Bindings Service (VBS)equests and answers then do not include the actual variabl
bindings in XML markup (whose serialization and de-sezatiion is time-consuming),
but just an identifier how the variable bindings can be a@®asthe VBS.

3. Considering the “simple ECA’ use cases, it should be albslyl transparent whether
the VBS is used, or whether the main-memory-based YavableBindings class is
used in some step. Especially, if e.g., in a join operatian,ihstances that use differ-
ent storage models are combined, this should be handlespteantly.

4. Furthermore, it must be possible that the decision tohsetain memory-basedri-
ableBindings implementation can be revised at any point by a service. Rappend
e.g., when a query that has been invoked for a single tuglesnehundreds of tuples,
or when a set of variable bindings stored in the databaseténdad with an XML
binding (cf. Section 5).



4.2 Consequences

Amongst the requirements, (1) is actually just an obsesadtiat confirms that a generic
functionality/wrapper in form of a Java class that belorgamars-common package that
is imported by the services is needed.

(2) excludes a solution based on local databases. Thisaedissupported by the obser-
vation that it would not be attractive that every service tingscomplemented by a local
database installation. As a consequence, a separate VBS baslesigned; there will be
multiple instances of that service throughout the Web. Rerrest of the paper, it remains
to develop how the actual functionality is distributed begéwn the VBS and the Java class.

(3) suggests the usual object-oriented implementatiomtapatract clasgariableBindings

with instantiable subclasseégemoryVariableBindings and DBVariableBindings, but then
(4) is not satisfied: then, an instanceMémoryVariableBindings could not turn into an
instance oDBVariableBindings. Insteaddelegatiorhas to be used:

There is a clas¥ariableBindings that provides the common functionality (e.g., maintain-
ing the format of the tuples) and has a data memtiy&fariableBindings which references
either an instance dflemoryVariableBindings or an instance obBVariableBindings, re-
spectively, that ioonly concerned with the storage issue and the actual operatRotb.
are implementations of an interfavariableBindingsimpl. With this, aVvariableBindings
instance can execute

/l'if current myVariableBindings is an instance of MemoryVariableBindings:
myVariableBindings = new DBVariableBindings(myVariableBindings);

and the other way round to transparently switch its intechalce of implementation.

The classvariableBindings implements the “organizational” functionality that is coman
to both variants, e.g., handle the metadata including thedb of the tuples, and the
actual algebraic operations on the tuples are providedahngbleBindings and delegated
to MemoryVariableBindings or DBVariableBindings.

4.3 Final Design

Every service can be configured to be able to use any VBS ssrvi@a JDBC, and a
threshold can be specified from what number of tuples om&\ariableBindings imple-
mentation is used. If a threshold is specified, also a defd8% to be used has to be
specified (by its JDBC access information) that is used wieewnhbindings are generated.
If variable bindings are communicated to a service, thigiseraccesses the VBS (also via
JDBC) where the variable bindings are hosted, which canfieréint from its default one.

The decision was made that all of the actual VB®&ctionalitythat has to do with the
metadata is implemented in JavavariableBindings, DBVariableBindings, andMemory-
VariableBindings. While MemoryVariableBindings implements the relational operations on
its internal data structure, tlEBVariableBindings class implements the operations in the
database. Here, the database is only the “dumb” SQL backethé DBVariableBindings
class, which invokes it with dynamically generated SQL camds (constructed from the
metadata information) via JDBC. Sanydatabase can serve with minor preparations (see



Section 4.4). Figure 3 shows the distribution of functidyabetween the VBS and the
Java classes that are imported by the services that use tBe VB

/Some Language Processor \
(e.g. ECA Engine or CCS Engine)

// Java Class: A
| | VariableBindings
: Java Class:|[ Java Class: VBS
| Memory- DBVariable- JDBC
: Variable- Bindings
k : Bindings

/

~—_—— e — -

Figure 3: Distribution of Functionality between VBS and ionfed Java Classes

The core signature and functionality DBVariableBindings is as follows:

e attributesmytablename, jdbcURI/user/pwd hold the current table name and the JDBC
connection information;

e new DBVariableBindings(MemoryVariableBindings): initial constructor: given a tuple
or an instance oMemoryVariableBindings to be converted, create a table whose at-
tribute names are the variable names, and insert the ttle¢stable is created in the
default VBS;

e unary relational operations that modify the table and&cdantents:

— projection:ALTER TABLE ¢ DROP COLUMN variables to be removed,
— selection:DELETE FROM ¢t WHERE NOT selection condition,
— bindInAllTuples(name, value): adds a new variable with a given value to all tuples:
ALTER TABLE ¢ ADD var datatype DEFAULT value;
ALTER TABLE ¢t MODIFY COLUMN var DEFAULT NULL,
e binary relational operations (with the other operand @lBvariableBindings):
— natural join: create a new table that contains the result:
INSERT INTO tpew
(SELECT * FROM t, t" WHERE equality of all shared variables)
and seimytablename to the new table name;
— union: add tuples given in main memory representation, @ctintents of a com-
plete table,
— minus (agemoveMatchingBindings(other)):
DELETE FROM t WHERE EXISTS
(SELECT * FROM t' WHERE equality of all shared variables);

e provide an iterator over the tuples. The classiableBindings implements the Java

interface “Iterable” and can just be used in any Java loops.



Binary Operations. The implementation of binary operations is only given footw
operands of the same implementation. This is accomplisheddreparing step:

If both operands ar&emoryVariableBindings and their number of tuples is below the
threshold (default: 2), and none of them has any variabldghmund to XML values, use
MemoryVariableBindings (cf. Section 5). Otherwise, convert each of them is necggear
DBVariableBindings and use th®BVariableBindings implementation of the operand.

Example 2 Fig. 4 shows the implementation @riableBindings.naturalJoin(other). The
fragment illustrates the polymorphism wrt. the useD8WariableBindings and Memory-
VariableBindings. The code snippet in Figure 5 shows the implementatidrByfariable-
Bindings.naturalJoininternal(other) that contains the dynamic generation of ttNSERT
INTO ... (SELECT FROM t1, t2 WHERE ¢,.var;, =to.var;, and ...and t;.var;, =tz.var;, ...)
SQL command that realizes the natural join.

The communication with the database is done via JDBC. Sineestatementmustbe
created dynamically according to the format of tiableBindings instance (i.e., the
variable names) and with the current table name, SQLJ istamalive here. Statements
are submitted as batches to minimize the communicatiorheagt.

public class Variabl eBi ndi ngs i npl enents Cl oneabl e

{
protected Vari abl ePropertiesLi st varsProps // format: nanes, datatypes, nullable?
/1 one of these contains the actual bindings:
public Vari abl eBi ndi ngsl npl nyVari abl eBi ndi ngs;

. [snipped] ...
public void natural Joi n(Vari abl eBi ndi ngs ot her, bool ean el i m nat eDups)
{ if (other.isTrueMenBindings()) return; /1 join with "true"?

if (other.isEmpty()) { nmakeClear(); return; }

/1 if XM.: turn both into Meny otherwise if self>threshold, turn it into DB
pr epar eToConbi ne( ot her) ;
set Var PropsLi st (VBUti | s. get VarsAfterJoin(this, other));

if(isMem() && other.isMen()) // Memx Mem
{ nyVari abl eBi ndi ngs. nat ural Joi n(
(Menor yVari abl eBi ndi ngs) ot her . get Vari abl eBi ndi ngs(), elini nateDups);

else // one of themis DB => do it in the DB
{ if (other.isMen() && other.size() == 1) // DB x MenfTuple
nat ur al Joi n(ot her. getFirstTuple());
el se // usual case: VarBdgs natural Join: at |east one of themis DB
{ turnBot hl nt oDB( ot her);
nmyVar i abl eBi ndi ngs. nat ur al Joi n( ot her. get Vari abl eBi ndi ngs(),
get Var PropsList(), elim nateDups);
111}

Figure 4: Code fragment for naturalJoin

Additional functionality is provided for exchanging vabia bindings stored in a table in
a VBS between two services, see Section 4.5.



public class DBVari abl eBi ndi ngs i npl enents Vari abl eBi ndi ngsl npl {
private String tabl enang;
... [sni pped]
publ i ¢ DBVari abl eBi ndi ngs nat ural Joi nl nternal (DBVari abl eBi ndi ngs ot her,
Vari abl ePropertiesLi st newar sProps, bool ean el i m nat eDups)
{

String newTabl enanme = DBProxy. get Tabl enane() ;
Col | ection<String> conmonVars = new HashSet <String>();
Col I ection<String> otherOnlyVars = new HashSet <String>();

VBUt i | s. sharedVars(getVars(), other.getVars(), commonVars, othernlyVars);
ArrayLi st<String> newar Order = new ArrayList<String>();
StringBuffer attrslist = new StringBuffer();

for (String varname : commonVars)

attrslist.append("t1." + " + varnane +'"’ + " [ ");
for (String varname : otherOnlyVars)

attrslist.append("t2." + "’ + varnane + '"’ + " [ ");
attrslist.deleteCharAt(attrslist.length()-1);
StringBuffer createTable =

new StringBuffer("CREATE TABLE " + newTabl ename + " (");
creat eTabl e. append( DBBi ndi ngsHel per. cr eat eTabl eCol urmsSt at enent (newvar sProps) ) ;
creat eTabl e. append(")");

/1 Create join query with WHERE cl ause

StringBuffer joinCondition = new StringBuffer ("");
commonVar s. r enpve( DBBi ndi ngsHel per . Enpt yCol unmNane) ;
if (!commonVars.isEnpty())

joinCondi tion. append("WHERE ") ;
for (String varnanme : commonVars)
joinCondition.append("t1." + '"' + varnane + "' + "=" +
"t2." + " 4+ varname + '"" + " AND ");
joinCondition.delete(joinCondition.length()-5, joinCondition.length());
}
try {
Connection conn = DBProxy. get Connection();
Statenment statenent = conn.createStatenment();
st at ement . addBat ch(createTabl e.toString());

StringBuffer s =
new StringBuffer("INSERT | NTO" + newTabl enane + "(SELECT ");
if (elimnateDups) s.append("DI STINCT ");
s. append(attrslist);
s.append(" FROM" + tablename + " t1l, " + other.tablenane + " t2 ");
s. append(j oi nCondi tion);
s. append(")");
st at ement . addBat ch(s.toString());
st at ement . addBat ch("COW T") ;
st at ement . execut eBat ch() ;
st atement. cl ose();
conn. cl ose();
} catch (SQLException e) { e.printStackTrace(); }
/1 the result does not yet belong to any VarBi ndi ngs:
return new DBVari abl eBi ndi ngs(nul I, newTabl enane) ;

1}

Figure 5: Code fragment for DBVariableBindings’ internaturalJoin

4.4 Requirements on the Database

Since multiple services store their variable bindings inBSythe decision was made that
the database administers the table names by an SQL sequleicbds\queried by the con-



structor ofDBVariableBindings that then creates a new tali® EATE TABLE mars_table_
with the next numbei. This sequence has to be created by the database admanistrat

4.5 Distributed Usage

When variable bindings stored in a table of some VBS are conizated from one service
to another, for the communication a variant of the XML mariaipsed that does not con-
tain the tuples themselves, but just the information in Witiatabase the variable bindings
are stored, and which table holds them.

e XML serialization: the DTD is extended
<! ELEMENT vari abl e- bi ndi ngs (tupl e*)>
<! ATTLI ST vari abl e- bi ndi ngs dat abase CDATA #| MPLI ED
t abl ename CDATA #| MPLI ED>
<l ELEMENT tupl e (vari abl e*)>
<! ELEMENT vari abl e ANY>
<! ATTLI ST vari abl e nane CDATA #REQUI RED>

and it is required that theariable-bindings elementeither contains tuples or has the
database andtablename attributes. The communication of variable bindings staned
atable in a VBS has thus the form

<variable-bindings database="f (jdbc-uri, user, password)” tablename="tablename”/>

where f(jdbc-uri, user, password) encrypts the communicated data (e.g., by a public-
key mechanism where the public keys of the services can lessed via the LSR).

e aconstructor from the above XML communication formatagableBindings instance
is created whosenyVariableBindings property refers to a new instance DBVari-
ableBindings that refers to the database table. The constructor recmtstthe meta-
data from the VBS database’s data dictionary. Recall thatdlble can reside in a VBS
that is the same or different from the receiving servicefadk VBS.

¢ If the receiving service does not support the use of the VBSHblds the table (which
can also be queried from the LSR), the variable bindingsemeexplicitly in the XML
markup. This is done without actually materializing the XML tree:

— the XML serialization ofDBVariableBindings serializes tuple-wise from a JDBC
result set into the HTTP message,

— the recipient reads from the HTTP message with a SAX parseefther creates
an instance ofMemoryVariableBindings (if the service does not support the use of
a VBS at all), or creates an a table in his default VBS and eseah SQL insert
command for each tuple that is read, and submits the commendBBC batch
statements to the VBS,

The cooperation between two services is illustrated in feigu



ServiceS; doing some task ...

step: <query(z1, x2)>
| done by Services .
T ‘\\

called Servicess:

|
: ;
\ 1 ll \ execute
\ 1 >
\\ | | <call <query>|with ref. toe-\ (T -query(@s, z2)>
\ some SQL | EUNN W
\  via JpBC ! <return With ref. 10>
. . . 7
CREATE TABLE ... \ . proj. to inputvars - ol
I NSERT . .. \ | 1 . \\/
ﬂ%riabléﬁindings%ervice X
\

Figure 6: Cooperation via a VBS

5 Some SQL Details

Case-Sensitive and Other Column Names. SQL column names are usually case-insen-
sitive. As variable names are usually case-sensitive (gpg in a framework like MARS
that allows for combination of different languages), anteptially all kinds of symbols
are allowed, it would not be safe to use their names direstlyodumn names. Even more,
in some languages, the variables are not only named, buatedyRIs (then, the language
code fragment can be represented as an RDF graph that atl@mslyze it). For that, all
tables are created with column names of the fomarnamé , wherevarnamas the actual
variable name. As all accesses are via JDBC statements fremBVariableBindings
class, this is just an internal matter.

XMLType: No Comparison, no Join. In MARS, variables may be bound to XML
fragments. While the SQLX standard contains XMLType, thigatlype cannot yet be
fully used: there is no comparison on it! Actually, a comparni of XML instances would
be expensive, since the attributes are not ordered, thei®\SICII serialization could not
be used as a workaround. It would need a specific implementafideep-equality.

For most other applications, this is no problem, as the rosusetanother key, and the
database is just used for storing XML, operating on it, regdti etc., but usually no com-



parisons are needed.

In contrast, an important part of the generic functionatdityvariable bindings is to join
them — which needs join conditions, and thus comparisonsloig. In the MARS envi-
ronment, the following is a common situation:

e given: a set of tuple$ps, . . ., 3, } of variable bindings for variables, . . ., vy,
e next step: a query that has some projectign. . ., v;, as input,

e the result of the query binds variables, ..., v;,, w1, ..., wn,

e this result has to be joined witf3y, . . ., 8, } over the join variables; , ..., v;,,

where somey;; can be of type XML. Especially, if = 1, andv;, is bound to XML
fragments, and the query is an application of an XPath egmedor extracting values
fromthe XML fragment, this is the only join variable.

So, in case thanyvariable is of type XMLTypeVariableBindings delegates tdemory-
VariableBindings (that uses XML deep-equality), no matter how many tuples.

6 Conclusion

The use case discussed in this paper shows how generic safaipationality is used in
the MARS framework for operating on sets of tuples of vaeabindings, and for pro-
viding the base for cooperation on them between differemnices. The database service
is complemented with a Java class that is imported by othdr Bérvices that use the
functionality. The database service is actually only usei)acentral storage and (ii) to
execute SQL statements on it that are generated dynamimathe Java class. Providing
such a service does only requirénimal preparation effort: create an SQL sequence.

Bibliography

[BFMSO06] E. Behrends, O. Fritzen, W. May, and D. Schubert. EXBA Engine for Deploying
Heterogeneous Component Languages in the Semantic WetelrReactivity (EDBT
Workshop) Springer LNCS 4254, pp. 887-898, 2006.

[BFMSO08] E. Behrends, O. Fritzen, W. May, and F. Schenk. Eddbey Event Algebras and Pro-
cess Algebras in a Framework for ECA Rules for the Semantib. Weundamenta
Informaticae 82:237-263, 2008.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, aneKSKim. Composite Events for
Active Databases: Semantics, Contexts and DetectiodLDB, pages 606—-617, 1994.

[HSLO8] T. Hornung, K. Simon, and G. Lausen. Mashing Up theep&Veb - Research in
Progress. I'WEBIST pages 58-66. INSTICC Press, 2008.

[MAAOD5] W. May, J. J. Alferes, and R. Amador. Active Rules iretSemantic Web: Dealing with
Language Heterogeneity. RuleML, Springer LNCS 3791, pp. 30—44. Springer, 2005.

[Mil83] R. Milner. Calculi for Synchrony and AsynchronyTheoretical Computer Science
pages 267-310, 1983.



