
A Database-Based Service for Handling Logical Variable
Bindings

Wolfgang May
Institut für Informatik, Universität Göttingen, Germany

may@informatik.uni-goettingen.de

Abstract: The paper discusses the use of adatabase as a servicethat supports applications
whose data flow is based on sets of tuples of variable bindings, as e.g., in logic-based frame-
works like Datalog and similar rule-based approaches. The service also supports cooperative
work of different services on the bindings, thus replacing the need for actual exchange of po-
tentially large sets of data during workflows. The concrete usage scenario of the service is in
a distributed environment for processing ECA (Event-Condition-Action) rules and processes
over relational states.

1 Introduction

Several applications and languages use logic programming style variables for their data
flow. The actual state of such an application is represented as a set of tuples of variable
bindings, i.e., a (potentially large) relation. The commonfunctionality for manipulating
this information can be seen as anabstract datatypethat provides constructors and the
usual operations of the relational algebra. As applications can handle large quantities of
data, a realization of the datatype as adatabase serviceis appropriate. Such a service can
not only handle bindings for being processed by an individual application, but also serve
as a central storage that replacesdata exchangebetween applications.

The functionality of the abstract datatype for logical variable bindings does not only con-
sist of the manipulation/combination of the actual tuples (in terms of applying SQL com-
mands), but also has to consider the format of the relations to translate the required op-
erations into SQL commands. For instance, the join of two sets of tuples is not only an
SQL query over two relations, but first requires to go throughthe variable lists of both,
and identify the join variables toconstructthe appropriate SQL statement.

Structure of the paper. We first give a formal definition of the concept ofvariable
bindingsand discuss possible implementation alternatives as a starting point. Section 3
introduces the actual usage scenario in a distributed Web Service environment. Section 4
discusses the design and usage of the service. Some specific SQL issues are picked up in
Section 5; a short conclusion follows.



2 Variable Bindings – the Concept

Sets of tuples of variable bindings are a common concept in logic-based approaches,
like Datalog. Consider a 5-ary predicatecountry/5 that holds for the name, the country
code, the area, population, and name of the capital of countries, e.g., for Germanycoun-
try(“Germany”, “D”, 356910,83536115, “Berlin”). Then, the simple Datalog query

?- country(N, C, A, P, Cap).

binds the variablesN , C, A, P , andCap and results in a set of tuples ofanswer bindings
(one tuple for each country)

{{N/“Germany”, C/“D”, A/356910, P/“83526115”, Cap/“Berlin” }
{N/“France”, C/“F”, A/547030, P/“58317450”, Cap/“Paris” }, . . . }

which can be interpreted as a relation with attributesN, C, A, P, andCap. Consider another
predicatecity/3 that holds for a city name, the country code where it is located, and its
population, e.g.,city(“Berlin”, “D”, 3472009). Then, the evaluation of conjunctive queries,
like

?- country(N, C, A, P, Cap), city(CityN, C, CityP).

consists of ajoin of two such relations, where the common variableC acts as join variable.
As known from Datalog, (safe) negation is implemented by setdifference (together with a
projection), and built-in predicates are implemented by selections. Furthermore, grouping,
ordering (and top-k), and some other operators are common.

Definition 1 A set of tuples of variable bindings consists of (i) a format
{Var1 : D1, . . . , Varn : Dn} (the variable namesVari with datatypesDi), and (ii) a set of
tuplesτ1, . . . , τm where eachτj is a (possibly partial) mappingτj : (Var1, . . . , Varn) →
(D1 ∪ {null})× . . .× (Dn ∪ {null}).
A set of tuples can thus be seen as a relationR with attribute namesVar1, . . . , Varn.

The size of variable bindings needed in a workflow vary from a single tuple over a small
number of variables up to potentially millions of tuples, although usually still over a rel-
atively small number of variables (often even less than 10).Nevertheless, the concept
should be able to support also bindings of a large number of variables.

So far, there are several straightforward implementation alternatives:

1. Provide and import an appropriate Java classVariableBindings that uses an in-memory
data structure. This choice is sufficient for small amounts of data.

2. Another possibility is that theVariableBindings class uses a local database via JDBC.

3. The third possibility is to use a (remote) Web Service thatprovides the interface of the
abstract datatype and usesits own database. TheVariableBindings class is then only a
stub that forwards its methods to the Web Service.

While (1) is actually restricted to small amounts of data, (2) has the disadvantage that
it would require each service that uses the class to be equipped with a local database



installation. A disadvantage of (3) is that even for small amounts of data (extreme, but
frequent case: only one tuple is propagated through the application) the database service
is contacted.

Further drawbacks of (3) are less obvious, but showed up whenconsidering what the ac-
tual implementation would look like. As described above, apart from the actual relational
operations that can be done in SQL, the abstract datatype hassome functionality for main-
taining and manipulating the format, i.e., the columns/attributes list and the datatypes, and
constructing the SQL queries as strings, which requires actual programming and persistent
storage of the metadata. Realizing this inside the databaseby PL/SQL is cumbersome. Al-
ternatively it can be implemented in the Java layer that implements the service interface
and then communicates by JDBC with the actual database. The latter alternative already
suggests to consider to move this functionality away from the Web Service, into the stub
VariableBindings class that is directly imported in the client services – and communicate
from there with the database via JDBC.

The communication interfaces of Web Services are usually based on XML. The variable
bindings can thus either be communicated in XML markup (thatwas already defined for
the given use case), or an instance of theVariableBindings Java class is exchanged via
SOAP. As the latter is inefficient, only the plain XML choice remains. XML data is un-
typed, so when exchanging variable bindings in explicit XMLformat, a datatype conver-
sion has to take place twice. Thus, it is preferable not to exchange the actual variable
bindings at all, but just to exchange a reference to a table where they are stored in a
database.

Next, we discuss the environment that lead to the development of the service, its specific
requirements, and its actual design decisions.

3 MARS

The service has been developed for use in theModular Active Rules in the Semantic Web
(MARS)framework. MARS is an open infrastructure for ECA rules and processes that
involve multiple services and languages. For each component of a rule or a process, the
rule designer can choose amongst an (open) set of appropriate languages. For instance,
the event specification can be a composite event expression in the Snoop event algebra
[CKAK94], which in turn embeds specifications of the relevant atomic events in –again– a
different language; and the action component can be expressed in theCalculus of Commu-
nicating Processes (CCS)Process Algebra [Mil83]. The markup of rules is in XML, with
the components embedded as XML subtrees. An ECA rule engine has been implemented
[BFMS06]; every component language is also implemented by some processor as a Web
Service. The communication between the Web services for executing rules is done by
HTTP messages that contain the fragment to be executed and the variable bindings. The
HTTP URIs and other metadata for finding an addressing processors for given language
fragments are managed byLanguage and Service Registries (LSRs).

Figure 1 (from [MAA05]) illustrates the structure of the rules and the corresponding types
of languages.



Rule Model ECARule

EventComponent ConditionComponent ActionComponent

Query
Component

Test
Component

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model
Language

Name, URI Processor

1 0..1
1..*

* 1

�
�

�
�

↓uses ↓uses ↓uses ↓uses

impl by

Figure 1: ECA Rule Components and Corresponding Languages (from [MAA05])

Variable Bindings in MARS ECA Rules. Coming back to the issue of the current paper,
the data flow is managed in terms of logical variables in the style of production rules. The
state of evaluation consists of a set of tuples of variable bindings (cf. Figure 2):

action(X1, . . . , Xn, . . . , Xk)←
event(X1, . . . , Xn), query(X1, . . . , Xn, . . . , Xk), test(X1, . . . , Xn, . . . , Xk) .

The evaluation of the event component (i.e., the detection of a (composite) event) results in
a set of tuples of variable bindings that is then extended in the query component, possibly
constrained in the test component, and propagated to the action component. The SNOOP
and CCS languages have also been extended with internal relational data flow [BFMS08].

Example 1 (ECA Rules and Variable Bindings) Consider a simple rule like (the syntax
is not the full MARS one, but just for sketching the main ideas)

ON <travel:FlightDelayed travel:flight=“F ” travel:minutes=“X”/>
WHERE F = “LH123”
DO send sms(0049-0815,“your flight is X minutes delayed”)

When a matching event<travel:FlightDelayed travel:flight=“LH123” travel:minutes=“30”/>

occurs, one tuple of variable bindings is generated by the event detection service, i.e.,
(F/“LH123”, X/30). It is propagated through the rule engine, the condition evaluates to
true, and it is forwarded to the action processor that sends the SMS.

Another rule,

ON <travel:FlightCanceled travel:flight=“F ”/>
WHERE nearbyHotel(H) and price(H ,P )
DO book the hotel H that has the lowest price

will again bind a single tuple in the event part, and extends this to about 5-10 tuples over
variablesF (that has the same value for all tuples),H andP in the query part.



<eca:Event>
event component
bindsX1, . . . , Xn
</eca:Event>

⇒

<eca:Query>

query component over
X1, . . . , Xn, . . . , Xk
join vars: X1, . . . , Xn
bindsXn+1, . . . , Xk
</eca:Query>

⇒

<eca:Test>
over
X1, . . . , Xk
</eca:Test>

⇒

<eca:Action>

action component
usesX1, . . . , Xk
</eca:Action>

(Composite) Event
Detection Engine Query Engine Action/Process

Engine

register
event

component

upon
detection:
result
variables

send
query

receive
result

send
action
+vars

existing variable bindings ./ new variable bindings

Query Service
query answers

relevant input variables

π

Figure 2: Use of Variables in an ECA Rule

In the above example cases, there is no need for a database service, but an in-memory Java
data structure is sufficient, and even faster than the communication overhead by JDBC
with a database. Only if the queries (there can be a sequence of queries) return many
tuples, the use of a database pays. The only operators on variable bindings needed so far
are joins, selection (for the test) and projection (for projecting on the required input tuples
for the individual subqueries).

The prototype of the ECA engine has been developed in [BFMS06] with a JavaVari-
ableBindings class that implements the common functionality for handling sets of tuples
of variable bindings. The communication between the services, i.e., back from the event
detection service to the ECA engine, then to the query engines and back, and then to
the action processor is realized in XML markup of the variable bindings according to the
following DTD:

<!ELEMENT variable-bindings (tuple*)>
<!ELEMENT tuple (variable*)>
<!ELEMENT variable ANY>

<!ATTLIST variable name CDATA #REQUIRED>

The content of thevariable element is either text-only (for strings and numbers) or canbe
an XML fragment.

Variable Bindings in MARS CCS Processes. For expressing the action part of ECA
rules, theCalculus of Communicating Processes (CCS)Process Algebra [Mil83] has been



extended with relational data flow, i.e., sets of tuples of variable bindings are propagated
through the process. As a language of the MARS framework, CCSprocesses can embed
subprocesses from arbitrary languages.

Here, the operations on such sets of tuples are more involvedthan in the relatively simple
linear data flow of ECA rules: CCS provides alternatives (when one branch executes for
some tuples, these tuples have to be removed from the other branches), parallel execution
with join (wait until all branches come back, where the subprocesses can even be asyn-
chronous and partial, i.e., some tuples proceed faster thanothers due to external queries),
and safe negation (tuples that match bindings returned by a subprocess are removed).

Furthermore, standalone CCS processes (i.e., not only as action part of ECA rules) showed
to be useful for specifiyingquery workflowsagainst (Deep) Web sources, which turned out
to develop into a separate subproject. Here, the embedded subprocesses are atomic sub-
processes in form of queries in theDeep Web Query Language (DWQL)that acts as a
wrapper for the tool described in [HSL08]. In this case, the tuples of (input) variable bind-
ings are communicated to the DWQL service, and the result bindings are communicated
back to the CCS service. Here, queries return large numbers of tuples (e.g., for a graph
exploration workflow that computesErdös numbers, i.e., minimal coauthoring distance,
based on DBLP), so the need for development of a database-based handling of variable
bindings became apparent.

4 Design of the Service and its Usage

4.1 Requirements

The above use cases provided the base for analyzing the requirements in this setting where
distributed, autonomous services cooperate based on the variable bindings:

1. All types of language services (event detection, processalgebra processors, query en-
gines, ECA rule engines) must have access to the functionality,

2. The database(s) should not be local to the processors, butthe data flowbetweenthe
processors should bereplacedby cooperation via the envisaged autonomousVariable
Bindings Service (VBS): requests and answers then do not include the actual variable
bindings in XML markup (whose serialization and de-serialization is time-consuming),
but just an identifier how the variable bindings can be accessed in the VBS.

3. Considering the “simple ECA” use cases, it should be absolutely transparent whether
the VBS is used, or whether the main-memory-based JavaVariableBindings class is
used in some step. Especially, if e.g., in a join operation, two instances that use differ-
ent storage models are combined, this should be handled transparently.

4. Furthermore, it must be possible that the decision to use the main memory-basedVari-
ableBindings implementation can be revised at any point by a service. Thishappend
e.g., when a query that has been invoked for a single tuple, returns hundreds of tuples,
or when a set of variable bindings stored in the database is extended with an XML
binding (cf. Section 5).



4.2 Consequences

Amongst the requirements, (1) is actually just an observation that confirms that a generic
functionality/wrapper in form of a Java class that belongs to amars-common package that
is imported by the services is needed.

(2) excludes a solution based on local databases. This decision is supported by the obser-
vation that it would not be attractive that every service must be complemented by a local
database installation. As a consequence, a separate VBS hasto be designed; there will be
multiple instances of that service throughout the Web. For the rest of the paper, it remains
to develop how the actual functionality is distributed between the VBS and the Java class.

(3) suggests the usual object-oriented implementation by an abstract classVariableBindings
with instantiable subclassesMemoryVariableBindings and DBVariableBindings, but then
(4) is not satisfied: then, an instance ofMemoryVariableBindings could not turn into an
instance ofDBVariableBindings. Instead,delegationhas to be used:

There is a classVariableBindings that provides the common functionality (e.g., maintain-
ing the format of the tuples) and has a data membermyVariableBindings which references
either an instance ofMemoryVariableBindings or an instance ofDBVariableBindings, re-
spectively, that isonly concerned with the storage issue and the actual operations.Both
are implementations of an interfaceVariableBindingsImpl. With this, aVariableBindings
instance can execute

// if current myVariableBindings is an instance of MemoryVariableBindings:
myVariableBindings = new DBVariableBindings(myVariableBindings);

and the other way round to transparently switch its internalchoice of implementation.

The classVariableBindings implements the “organizational” functionality that is common
to both variants, e.g., handle the metadata including the format of the tuples, and the
actual algebraic operations on the tuples are provided byVariableBindings and delegated
to MemoryVariableBindings or DBVariableBindings.

4.3 Final Design

Every service can be configured to be able to use any VBS services via JDBC, and a
threshold can be specified from what number of tuples on theDBVariableBindings imple-
mentation is used. If a threshold is specified, also a defaultVBS to be used has to be
specified (by its JDBC access information) that is used when new bindings are generated.
If variable bindings are communicated to a service, this service accesses the VBS (also via
JDBC) where the variable bindings are hosted, which can be different from its default one.

The decision was made that all of the actual VBSfunctionality that has to do with the
metadata is implemented in Java inVariableBindings, DBVariableBindings, andMemory-
VariableBindings. While MemoryVariableBindings implements the relational operations on
its internal data structure, theDBVariableBindings class implements the operations in the
database. Here, the database is only the “dumb” SQL backend to theDBVariableBindings
class, which invokes it with dynamically generated SQL commands (constructed from the
metadata information) via JDBC. So,anydatabase can serve with minor preparations (see



Section 4.4). Figure 3 shows the distribution of functionality between the VBS and the
Java classes that are imported by the services that use the VBS.

Some Language Processor
(e.g. ECA Engine or CCS Engine)

Java Class:
VariableBindings

Java Class:
Memory-
Variable-
Bindings

Java Class:
DBVariable-
Bindings

VBS
JDBC

Figure 3: Distribution of Functionality between VBS and imported Java Classes

The core signature and functionality ofDBVariableBindings is as follows:

• attributesmytablename, jdbcURI/user/pwd hold the current table name and the JDBC
connection information;

• new DBVariableBindings(MemoryVariableBindings): initial constructor: given a tuple
or an instance ofMemoryVariableBindings to be converted, create a table whose at-
tribute names are the variable names, and insert the tuple(s); the table is created in the
default VBS;

• unary relational operations that modify the table and/or its contents:
– projection:ALTER TABLE t DROP COLUMN variables to be removed ,

– selection:DELETE FROM t WHERE NOT selection condition,
– bindInAllTuples(name, value): adds a new variable with a given value to all tuples:

ALTER TABLE t ADD var datatype DEFAULT value;
ALTER TABLE t MODIFY COLUMN var DEFAULT NULL;

• binary relational operations (with the other operand alsoDBVariableBindings):
– natural join: create a new table that contains the result:

INSERT INTO tnew

(SELECT * FROM t, t′ WHERE equality of all shared variables)

and setmytablename to the new table name;

– union: add tuples given in main memory representation, or the contents of a com-
plete table,

– minus (asremoveMatchingBindings(other)):
DELETE FROM t WHERE EXISTS

(SELECT * FROM t′ WHERE equality of all shared variables);

• provide an iterator over the tuples. The classVariableBindings implements the Java
interface “Iterable” and can just be used in any Java loops.



Binary Operations. The implementation of binary operations is only given for two
operands of the same implementation. This is accomplished by a preparing step:

If both operands areMemoryVariableBindings and their number of tuples is below the
threshold (default: 2), and none of them has any variable that is bound to XML values, use
MemoryVariableBindings (cf. Section 5). Otherwise, convert each of them is necessary to
DBVariableBindings and use theDBVariableBindings implementation of the operand.

Example 2 Fig. 4 shows the implementation ofVariableBindings.naturalJoin(other). The
fragment illustrates the polymorphism wrt. the use ofDBVariableBindings and Memory-
VariableBindings. The code snippet in Figure 5 shows the implementation ofDBVariable-
Bindings.naturalJoinInternal(other) that contains the dynamic generation of theINSERT
INTO ... (SELECT FROM t1, t2 WHERE t1.vari1=t2.varj1 and . . . and t1.varik

=t2.varjk
...)

SQL command that realizes the natural join.

The communication with the database is done via JDBC. Since the statementsmustbe
created dynamically according to the format of theVariableBindings instance (i.e., the
variable names) and with the current table name, SQLJ is no alternative here. Statements
are submitted as batches to minimize the communication overhead.

public class VariableBindings implements Cloneable
{
protected VariablePropertiesList varsProps // format: names, datatypes, nullable?
// one of these contains the actual bindings:
public VariableBindingsImpl myVariableBindings;

... [snipped] ...
public void naturalJoin(VariableBindings other, boolean eliminateDups)
{ if (other.isTrueMemBindings()) return; // join with "true"?

if (other.isEmpty()) { makeClear(); return; }

// if XML: turn both into Mem; otherwise if self>threshold, turn it into DB
prepareToCombine(other);
setVarPropsList(VBUtils.getVarsAfterJoin(this, other));

if(isMem() && other.isMem()) // Mem x Mem
{ myVariableBindings.naturalJoin(

(MemoryVariableBindings)other.getVariableBindings(), eliminateDups);
}
else // one of them is DB => do it in the DB
{ if (other.isMem() && other.size() == 1) // DB x MemTuple

naturalJoin(other.getFirstTuple());
else // usual case: VarBdgs naturalJoin: at least one of them is DB
{ turnBothIntoDB(other);

myVariableBindings.naturalJoin(other.getVariableBindings(),
getVarPropsList(), eliminateDups);

}}}}

Figure 4: Code fragment for naturalJoin

Additional functionality is provided for exchanging variable bindings stored in a table in
a VBS between two services, see Section 4.5.



public class DBVariableBindings implements VariableBindingsImpl{
private String tablename;

...[snipped] ...
public DBVariableBindings naturalJoinInternal(DBVariableBindings other,

VariablePropertiesList newVarsProps, boolean eliminateDups)
{

String newTablename = DBProxy.getTablename();
Collection<String> commonVars = new HashSet<String>();
Collection<String> otherOnlyVars = new HashSet<String>();

VBUtils.sharedVars(getVars(), other.getVars(), commonVars, otherOnlyVars);
ArrayList<String> newVarOrder = new ArrayList<String>();
StringBuffer attrslist = new StringBuffer();

for (String varname : commonVars)
attrslist.append("t1." + ’"’ + varname + ’"’ + " ,");

for (String varname : otherOnlyVars)
attrslist.append("t2." + ’"’ + varname + ’"’ + " ,");

attrslist.deleteCharAt(attrslist.length()-1);
StringBuffer createTable =
new StringBuffer("CREATE TABLE " + newTablename + " (");

createTable.append(DBBindingsHelper.createTableColumnsStatement(newVarsProps));
createTable.append(")");

// Create join query with WHERE clause
StringBuffer joinCondition = new StringBuffer ("");
commonVars.remove(DBBindingsHelper.EmptyColumnName);
if (!commonVars.isEmpty())
{
joinCondition.append("WHERE ");
for (String varname : commonVars)

joinCondition.append("t1." + ’"’ + varname + ’"’ + "=" +
"t2." + ’"’ + varname + ’"’ + " AND ");

joinCondition.delete(joinCondition.length()-5, joinCondition.length());
}
try {
Connection conn = DBProxy.getConnection();
Statement statement = conn.createStatement();
statement.addBatch(createTable.toString());

StringBuffer s =
new StringBuffer("INSERT INTO " + newTablename + "(SELECT ");

if (eliminateDups) s.append("DISTINCT ");
s.append(attrslist);
s.append(" FROM " + tablename + " t1, " + other.tablename + " t2 ");
s.append(joinCondition);
s.append(")");
statement.addBatch(s.toString());
statement.addBatch("COMMIT");
statement.executeBatch();
statement.close();
conn.close();

} catch (SQLException e) { e.printStackTrace(); }
// the result does not yet belong to any VarBindings:
return new DBVariableBindings(null, newTablename);

}}

Figure 5: Code fragment for DBVariableBindings’ internal naturalJoin

4.4 Requirements on the Database

Since multiple services store their variable bindings in a VBS, the decision was made that
the database administers the table names by an SQL sequence which is queried by the con-



structor ofDBVariableBindings that then creates a new tableCREATE TABLE mars table i

with the next numberi. This sequence has to be created by the database administrator.

4.5 Distributed Usage

When variable bindings stored in a table of some VBS are communicated from one service
to another, for the communication a variant of the XML markupis used that does not con-
tain the tuples themselves, but just the information in which database the variable bindings
are stored, and which table holds them.

• XML serialization: the DTD is extended
<!ELEMENT variable-bindings (tuple*)>
<!ATTLIST variable-bindings database CDATA #IMPLIED

tablename CDATA #IMPLIED>
<!ELEMENT tuple (variable*)>
<!ELEMENT variable ANY>

<!ATTLIST variable name CDATA #REQUIRED>

and it is required that thevariable-bindings elementeither contains tuples or has the
database andtablename attributes. The communication of variable bindings storedin
a table in a VBS has thus the form

<variable-bindings database=“f(jdbc-uri, user, password)” tablename=“tablename”/>

wheref(jdbc-uri, user, password) encrypts the communicated data (e.g., by a public-
key mechanism where the public keys of the services can be accessed via the LSR).

• a constructor from the above XML communication format, aVariableBindings instance
is created whosemyVariableBindings property refers to a new instance ofDBVari-
ableBindings that refers to the database table. The constructor reconstructs the meta-
data from the VBS database’s data dictionary. Recall that this table can reside in a VBS
that is the same or different from the receiving service’s default VBS.

• If the receiving service does not support the use of the VBS that holds the table (which
can also be queried from the LSR), the variable bindings are sent explicitly in the XML
markup. This is done without actually materializing the whole XML tree:

– the XML serialization ofDBVariableBindings serializes tuple-wise from a JDBC
result set into the HTTP message,

– the recipient reads from the HTTP message with a SAX parser that either creates
an instance ofMemoryVariableBindings (if the service does not support the use of
a VBS at all), or creates an a table in his default VBS and creates an SQL insert
command for each tuple that is read, and submits the commandsas JDBC batch
statements to the VBS,

The cooperation between two services is illustrated in Figure 6.



ServiceS1 doing some task ...

step1 step2 step3: <query(x1, x2)>

done by ServiceS2

step4

called ServiceS2:
execute
<query(x1, x2)>

VariableBindingsService

./

π[x1, x2]

CREATE TABLE ...
INSERT ...

some SQL
via JDBC

<call <query> with ref. to•>

proj. to input vars

<return with ref. to•>

Figure 6: Cooperation via a VBS

5 Some SQL Details

Case-Sensitive and Other Column Names.SQL column names are usually case-insen-
sitive. As variable names are usually case-sensitive (especially, in a framework like MARS
that allows for combination of different languages), and potentially all kinds of symbols
are allowed, it would not be safe to use their names directly as column names. Even more,
in some languages, the variables are not only named, but theyare URIs (then, the language
code fragment can be represented as an RDF graph that allows to analyze it). For that, all
tables are created with column names of the form"varname", wherevarnameis the actual
variable name. As all accesses are via JDBC statements from the DBVariableBindings
class, this is just an internal matter.

XMLType: No Comparison, no Join. In MARS, variables may be bound to XML
fragments. While the SQLX standard contains XMLType, this datatype cannot yet be
fully used: there is no comparison on it! Actually, a comparison of XML instances would
be expensive, since the attributes are not ordered, thus, the ASCII serialization could not
be used as a workaround. It would need a specific implementation of deep-equality.

For most other applications, this is no problem, as the rows have another key, and the
database is just used for storing XML, operating on it, reading it etc., but usually no com-



parisons are needed.

In contrast, an important part of the generic functionalityof variable bindings is to join
them – which needs join conditions, and thus comparisons of values. In the MARS envi-
ronment, the following is a common situation:

• given: a set of tuples{β1, . . . , βn} of variable bindings for variablesv1, . . . , vk,

• next step: a query that has some projectionvi1 , . . . , vi`
as input,

• the result of the query binds variablesvi1 , . . . , vi`
, w1, . . . , wm,

• this result has to be joined with{β1, . . . , βn} over the join variablesvi1 , . . . , vi`
,

where somevij
can be of type XML. Especially, if̀ = 1, andvi1 is bound to XML

fragments, and the query is an application of an XPath expression for extracting values
from the XML fragment, this is the only join variable.

So, in case thatanyvariable is of type XMLType,VariableBindings delegates toMemory-
VariableBindings (that uses XML deep-equality), no matter how many tuples.

6 Conclusion

The use case discussed in this paper shows how generic database functionality is used in
the MARS framework for operating on sets of tuples of variable bindings, and for pro-
viding the base for cooperation on them between different services. The database service
is complemented with a Java class that is imported by other Web Services that use the
functionality. The database service is actually only used as (i) central storage and (ii) to
execute SQL statements on it that are generated dynamicallyby the Java class. Providing
such a service does only requireminimalpreparation effort: create an SQL sequence.

Bibliography

[BFMS06] E. Behrends, O. Fritzen, W. May, and D. Schubert. AnECA Engine for Deploying
Heterogeneous Component Languages in the Semantic Web. InWeb Reactivity (EDBT
Workshop), Springer LNCS 4254, pp. 887–898, 2006.

[BFMS08] E. Behrends, O. Fritzen, W. May, and F. Schenk. Embedding Event Algebras and Pro-
cess Algebras in a Framework for ECA Rules for the Semantic Web. Fundamenta
Informaticae, 82:237–263, 2008.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite Events for
Active Databases: Semantics, Contexts and Detection. InVLDB, pages 606–617, 1994.

[HSL08] T. Hornung, K. Simon, and G. Lausen. Mashing Up the Deep Web - Research in
Progress. InWEBIST, pages 58–66. INSTICC Press, 2008.

[MAA05] W. May, J. J. Alferes, and R. Amador. Active Rules in the Semantic Web: Dealing with
Language Heterogeneity. InRuleML, Springer LNCS 3791, pp. 30–44. Springer, 2005.

[Mil83] R. Milner. Calculi for Synchrony and Asynchrony.Theoretical Computer Science,
pages 267–310, 1983.


