
Rule-Based Active Domain Brokering for the
Semantic Web

Erik Behrends, Oliver Fritzen, Tobias Knabke,
Wolfgang May, Franz Schenk

Institut für Informatik, Universität Göttingen,
Germany

{behrends,fritzen,knabke,may,schenk}@informatik.uni-goettingen.de

Supported by the EU Network of Excellence

RR 2007, Innsbruck, Austria, June 8, 2007



MARS
Modular Active Rules on the Semantic Web

Rule-based description of behavior in the Semantic Web

Rules are themselves objects in the Semantic Web

OWL Ontology of (Active) Rules

Rules as RDF data

which will finally allow for reasoning about rules.

Paradigm: ECA Rules
“On Event check Condition and then do Action”

modular, declarative specification

subontologies/-languages for specifying Events,
Conditions, Actions,

Services that implement these sublanguages.
RR07: MARS 1



Domain Ontologies with Active Notions
Domain languages also describe behavior:

Domain Ontology

Events Concepts Actions
<trvl:canceled-flight

flight=“LH123”>

<trvl:reason>...</trvl:reason>

</trvl:canceled-flight>

<trvl:cancel-flight
flight=“AF456”>

<trvl:reason>...</trvl:reason
</trvl:cancel-flight>

Classes Relationships Individuals

influence

raise

Ontology of behavior aspects:

correlate and axiomatize actions, events and state



Ontologies with Active Notions (Cont’d)

There are not only atomic events and actions.

Ontologies also define the following:

Derived/complex events, specified by some formalism over
simpler events (usually an event algebra, e.g., SNOOP)

composite actions = processes,
specified by a process algebra over simpler actions, e.g.
CCS

RR07: MARS 3



MARS’ Underlying Paradigm: ECA Rules

“On Event check Condition and then do Action”

paradigm of Event-Driven Behavior,

modular, declarative specification in terms of the domain
ontology

<eca:Rule > ECA-ML Language </eca:Rule >

<eca:Event/ > <eca:Query/ > <eca:Test/ > <eca:Action/ >

ECA-ML Language

Active
Concepts
Ontologies

Event
Language

Query
Language

Test
Language

Action
Language

Composite Queries Conditions Complex
Events Reactions

Domain Ontologies Application-Domain Language

Atomic Events Literals Atomic Actions

embeds embeds embeds

RR07: MARS 4



MARS: General Architecture (simplified)

ECA Rule
Engine

Sublanguage Services
(Composite Event Detection,
Complex Process Engines)

Domain Broker

Domain brokers forward actions and
events, and process queries
• Derived Event Specifications:

EC(raise-E)-Rules
• Composite Action Specifications:

(on-A)CA-Rules

Domain Node Domain Node

Domain nodes execute actions,
raise events, and answer queries
• Action Implementation Spec’s:

local (on-A)CA-Rules

events
answers

queries

actions

events

actions

events

RR07: MARS 5



Domain Broker

Initialize with an Ontology

complete ontology in terms of mars:Class, mars:Property,
mars:Event, mars:Action

the ontology’s ECE and ACA rules (using the ECA-ML
ontology+markup)

domain broker registers ECE+ACA rules at the ECA Engine

Domain Nodes

Each domain node registers at the domain broker which
notions (classes, properties, actions) it mars:supports,

runtime behavior: next slide ...
RR07: MARS 6



Architecture of the Domain Node

Domain
Broker

ACA Mapper
matches actions
against mappings

ACA Mappings
Repository

Jena-based core module
with Active Functionality

PostgreSQL
Database:
RDF facts

DL Reasoner
(e.g. Pellet)

register for classes, properties, actions

updates

RDF graph
facts

queries

model
answers

actions

queries

answers

event
occurrences

RR07: MARS 7



Sample Local ACA Rule of the Domain Node

in: an action in XML

or RDF (graph) fragment containing one
{?A rdf:type mars:Action }

implement the action on the local RDF database
## sample rule using XQuery-style
IMPLEMENT <travel:schedule-flight/> BY
let $flight := /travel:schedule-flight/@flight
let $captain := /travel:schedule-flight/@captain
return concat(
“INSERT ($flight has-captain $captain);”,
for $name in /travel:schedule-flight/cabincrew/@name
let $cabincrew := local:make-person-uri($name)
return “INSERT ($flight has-cabincrew $cabincrew);”)

RR07: MARS 8



Summary
describe events and actions of an application within its
RDF/OWL ontology

rules on different levels of abstraction/locality

architecture: functionality provided by specialized nodes

outsourcing ECE+ACA rules as much as possible to
existing ECA infrastructure.

Further Information

REWERSE Deliverable I5-D6: “An RDF/OWL-Level Spec.
of Evolution and Behavior in the Semantic Web” and
papers at ODBASE05, WebR06, RuleML05+06, PPSWR05+06

MARS proof-of-concept experimental prototype:
http://www.semwebtech.org



... following: backup slides



Architecture

Event
Detection
snoop:

Atomic Event
Matcher
match:

ECA
Engine
eca:Action

Engine
ccs:

Domain
Broker
travel: SMTP Mail

Service
smtp:

Lufthansa
travel:

SNCF
travel:

Client C:
Travel
Agency
travel:

1.1: register
rule
eca: travel:
match: snoop:
ccs: smtp:

1.2: register event
travel: match: snoop:

1.3: atomic
event patterns
match: travel:

1.4: register me
travel:

2.1a: atomic
events travel:

2.1b:
atomic
events
travel:

2.2: atomic
events travel:

3: detected
parameters

4: detected
parameters

5.1: action
ccs: travel: smtp:

5.2a: atomic
actions
travel:

5.2b: atomic
actions smtp:

5.3b:
message
(here:
confirm)

by url

La
ng

ua
ge

S
er

vi
ce

s
A

pp
lic

at
io

n
D

om
ai

n

5.3a:
booking
travel:

RR07: MARS 11



ECA Architecture

ECA Engine:
<Rule>

<Event xmlns:ev=“. . . ”>. . . </Event>
<Query xmlns:ql=“. . . ”>. . . </Query>

<Test xmlns:tst=“. . . ”>. . . </Test>
<Action xmlns:act=“. . . ”>. . . </Action>

</Rule>

Generic
Request
Handler

Languages
&

Services
Registry

Component Language Services

E · · · E Q · · · Q A · · · A

travel: banking: · · · uni:

Domain Brokers

LH SNCF · · ·

Domain Services

components,
input

results

language
namespace

service
description

about

RR07: MARS 12



Rule Markup: ECA-ML
<!ELEMENT rule (event,query*,test?,action +) >

<eca:Rule rule-specific attributes>

<eca:Event identification of the language >

event specification, probably binding variables
</eca:Event >

<eca:Query identification of the language > <!-- there may be several queries -->

query specification; using variables, binding others
</eca:Query >

<eca:Test identification of the language >

condition specification, using variables
</eca:Test >

<eca:Action identification of the language > <!-- there may be several actions -->

action specification, using variables, probably binding local ones
</eca:Action >

</eca:Rule >



Rule Semantics/Logical Variables

Deductive Rules: head(X1, . . . ,Xn) :−body(X1, . . . ,Xn)

bind variables in the body

instantiate/execute head for each tuple

ECA Rules

initial bindings from the event

additional bindings from queries

restrict by the test

execute action for each tuple

action(X1, . . . ,Xn)←

event(X1, . . . ,Xk), query(X1, . . . ,Xk, . . .Xn), test(X1, . . . ,Xn)



Binding and Use of Variables in ECA Rules
action(X1, . . . ,Xn)←

event(X1, . . . ,Xk), query(X1, . . . ,Xk, . . .Xn), test(X1, . . . ,Xn)

<eca:Event>
event component
binds X1, . . . ,Xk
</eca:Event>

⇒

<eca:Query>

query component
over X1, . . . ,Xk, . . . ,Xn
join vars: X1, . . . ,Xk
binds Xk+1, . . . ,Xn
</eca:Query>

⇒
<eca:Test>
over X1, . . . ,Xn
</eca:Test>

⇒

<eca:Action>

action comp.
uses X1, . . . ,Xn
</eca:Action>

(Composite)
Event
Detection
Engine

Query Engine
Action/
Process
Engine

Semantic Web: Domain Brokers and Domain Nodes

register
event

comp.

upon
detection:
result
variables

send
query,

receive
result

send
action,
+ vars


	Large 
	MARS
	Domain Ontologies with Active Notions
	Ontologies with Active Notions (Cont'd)
	MARS' Underlying Paradigm: ECA Rules
	MARS: General Architecture (simplified)
	Domain Broker
	Architecture of the Domain Node
	Sample Local ACA Rule of the Domain Node
	Summary
	
	Architecture
	ECA Architecture
	Rule Markup: ECA-ML
	Rule Semantics/Logical Variables
	Binding and Use of Variables in ECA Rules

