
Combining ECA Rules with Process Algebras
for the Semantic Web

Erik Behrends, Oliver Fritzen, Wolfgang May,
Franz Schenk

Institut für Informatik, Universität Göttingen,
Germany

{behrends,fritzen,may,schenk }@informatik.uni-goettingen.de

Supported by the EU Network of Excellence

RuleML 2006, Athens, Georgia/USA, Nov. 10,
2006

Motivation and Goals

(Semantic) Web:

XML: bridge the heterogeneity of data models and
languages

RDF, OWL provide a computer-understandable semantics

... same goals for describing behavior:

description of behavior in the Semantic Web

semantic description of behavior

Event-Condition-Action Rules are suitable for both goals:

operational semantics

ontology of rules, events, actions
ECA-CCS 2

ECA Rules

“On Event check Condition and then do Action”

paradigm of Event-Driven Behavior,

modular, declarative specification in terms of the domain
ontology

sublanguages for specifying Events, Conditions, Actions

global ECA rules that act “in the Web”

Requirements

ontology of behavior aspects

modular markup definition

implement an operational and executable semantics
ECA-CCS 3

Events and Actions in the Semantic Web

applications do not only have an ontology that describes
static notions

cities, airlines, flights, etc., relations between them ...

but also an ontology of events and actions

cancelling a flight, cancelling a (hotel, flight) booking,

Domain languages also describe behavior:

Domain Ontology

Events Concepts Actions

Classes Relationships Individuals

influence

raise

ECA-CCS 4

Embedding of Languages

... there are not only atomic events and actions.

ECA Language :
<event/ > <query/ > <test/ > <action/ >

ECA Language

Active
Concepts
Ontologies

Event
Language

Query
Language

Test
Language

Action
Language

Composite Queries Conditions Complex
Events Reactions

Domain Ontologies
Application-Domain Language

Atomic Events Literals Atomic Actions

embeds embeds embeds

ECA-CCS 5

Rule Markup: ECA-ML
<!ELEMENT rule (event,query*,test?,action +) >

<eca:rule rule-specific attributes>

<eca:event identification of the language >

event specification, probably binding variables
</eca:event >

<eca:query identification of the language > <!-- there may be several queries -->

query specification; using variables, binding others
</eca:query >

<eca:test identification of the language >

condition specification, using variables
</eca:test >

<eca:action identification of the language > <!-- there may be several actions -->

action specification, using variables, probably binding local ones
</eca:action >

</eca:rule >

Binding and Use of Variables in ECA Rules
action(X1, . . . ,Xn)←

event(X1, . . . ,Xk), query(X1, . . . ,Xk, . . .Xn), test(X1, . . . ,Xn)

<eca:event>
event component
binds X1, . . . ,Xn
</eca:event>

⇒

<eca:query>

query component
over X1, . . . ,Xn, . . . ,Xk
join vars: X1, . . . ,Xn
binds Xn+1, . . . ,Xk
</eca:query>

⇒
<eca:test>
over X1, . . . ,Xk
</eca:test>

⇒

<eca:action>

action comp.
uses X1, . . . ,Xk
</eca:action>

(Composite)
Event
Detection
Engine

Query Engine
Action/
Process
Engine

Semantic Web: Domain Brokers and Domain Nodes

register
event

comp.

upon
detection:
result
variables

send
query,

receive
result

send
action,
+ vars

Rule Markup: Example (Stripped)

<!ELEMENT rule (event,query*,test?,action +) >

<eca:rule xmlns:travel=“http://www.travel.de”>

<eca:event xmlns:snoop=“http://www.snoop.org”>

<snoop:seq> <travel:delayed-flight flight=“{$flight}”/>
<travel:canceled-flight flight=“{$flight}”/> </snoop:seq>

</eca:event>
<eca:query>

<eca:variable name=“email”>

<eca:opaque lang=“http://www.w3.org/xpath”>

doc(“http://xml.lufthansa.de”)/flights[code=“{$flight}”]/passenger/@e-mail
</eca:opaque> </eca:variable> </eca:query>

<eca:action xmlns:smtp=“...”>

<smtp:send-mail to=“$email” text=“...”/>
</eca:action>

</eca:rule>

ECA-CCS 8

Active Concepts Ontologies

Domains specify atomic events, actions and static concepts

Composite [Algebraic] Active Concepts

Event algebras: composite events

Process algebras (e.g. CCS)

consist of composers/operators to define composite
events/processes,

leaves of the terms are atomic domain-level events/actions,

as operator trees: “standard” XML markup of terms

RDF markup as languages,

every expression can be associated with its language.

Composite Actions: Process Algebras
e.g., CCS - Calculus of Communicating Systems [Milner‘80]

operational semantics defined by transition rules, e.g.

a sequence of actions to be executed,

a process that includes “receiving” actions,

guarded (i.e., conditional) execution alternatives,

the start of a fixpoint (i.e., iteration or even infinite
processes), and

a family of communicating, concurrent processes.

Originally only over atomic processes/actions

reading and writing simulated by communication
a (send), ā (receive) “match” as communication

... extend this to the (Semantic) Web environment with autono-
mous nodes.

Adaptation of Process Algebras

Goal: specification of reactions in ECA rules

liberal asynchronous variant of CCS: go on when possible,
waiting and delaying possible

extend with variable bindings semantics

input variables come bound to values/URIs

additional variables can be bound by “communication”

queries as atomic actions: to be executed, contribute to the
variable bindings

event subexpressions as atomic actions: like waiting for ā
communication

⇒ subexpressions in other kinds of component languages
ECA-CCS 11

Languages in the Action Component

Process
Engine

Action Component
Language, e.g. CCS

Composer

name

implements

Process Algebra Responsibility

Other Responsibilities Event
Detector

Query
Engine

Domain
Broker

Domain
Nodes

Domain
Language

uri

Event
Language

uri

Query/
Condition
Language

uri

Atomic
Events Literals Atomic

Actions

embeds
1..* *

embeds

*

*

uses

uses uses

ECA-CCS 12

CCS Markup

<ccs:sequence>CCS subexpressions </ccs:sequence>

<ccs:alternative>CCS subexpressions </ccs:alternative>

<ccs:concurrent>CCS subexpressions </ccs:concurrent>

<ccs:fixpoint variables=“X1 X2 . . . Xn” index=“i” // “my” index
localvars=“...”> n subexpressions </ccs:fixpoint>

<ccs:atomic-action>domain-level action </ccs:atomic-action>

<ccs:event xmlns:ev-ns=“uri”>event expression </ccs:event>
<ccs:query xmlns:q-ns=“uri”>query expression </ccs:query>

<ccs:test xmlns:t-ns=“uri”>test expression </ccs:test>

Embedding Mechanisms: Same as in ECA-ML

communication by logical variables

namespaces for identifying languages of subexpressions

Example

Consider the following scenario:

if a student fails twice in a written exam (composite event),
it is required that another oral assessment takes place for
deciding upon final passing or failure.

Action component of the rule: Ask the responsible lecturer
for a date and time. If a room is available, the student and
the lecturer are notified. If not, ask for another date/time.
fixX .(ask appointment($Lecturer,$Subj,$StudNo) :

∂ proposed appointment($Lecturer,$Subj,$DateTime) :

(available(room,$DateTime) +

(¬ available(room,$DateTime) : X))) :
inform($StudNo,$Subj,$DateTime) :
inform($Lecturer,$Subj,$DateTime)

ECA-CCS 14

<eca:rule xmlns:uni=“http://www.education.de”>

<eca:event> failed twice – binds $student ID and $course </eca:event>
<eca:query> binds e-mail addresses of the student and the lecturer </eca:query>

<eca:action xmlns:ccs=“...”>

<ccs:seq>

<ccs:fixpoint variables=“X” index=“1” localvars=“$date $time $room”>

<ccs:seq>

<ccs:atomic> send asking mail to lecturer </ccs:atomic>

<ccs:event> answer binds $date and $time</ccs:event>
<ccs:query> any room $room at $date $time available? </ccs:query>

<ccs:alt>
<ccs:test> yes </ccs:test>
<ccs:seq>

<ccs:test> no</ccs:test> <ccs:variable name=“X”/>
</ccs:seq>

</ccs:alt>
</ccs:seq>

</ccs:fixpoint>
<ccs:atomic> send message ($date, $time, $room) to student </ccs:atomic>

<ccs:atomic> send message ($date, $time, $room) to lecturer </ccs:atomic>

</ccs:seq>

</eca:action>

</eca:rule>

Service-Based Architecture

Event
Detection
snoop:

Atomic Event
Matcher
match:

ECA
Engine
eca:Action

Engine
ccs:

Domain
Broker
travel: SMTP Mail

Service
smtp:

Lufthansa
travel:

SNCF
travel:

Client C:
Travel
Agency
travel:

1.1: register
rule
eca: travel:
match: snoop:
ccs: smtp:

1.2: register event
travel: match: snoop:

1.3: atomic
event patterns
match: travel:

1.4: register me
travel:

2.1a: atomic
events travel:

2.1b:
atomic
events
travel:

2.2: atomic
events travel:

3: detected
parameters

4: detected
parameters

5.1: action
ccs: travel: smtp:

5.2a: atomic
actions
travel:

5.2b: atomic
actions smtp:

5.3b:
message
(here:
confirm)
by url

La
ng

ua
ge

S
er

vi
ce

s
A

pp
lic

at
io

n
D

om
ai

n

5.3a:
booking
travel:

ECA-CCS 16

Comparison

CCS (extended with events and queries) strictly more
expressive than ECA rules alone:
ECA pattern in CCS: event:condition:action,

many ECA rules have much simpler actions and do not
need CCS,

useful to have CCS as an option for the action part.

ECA-CCS 17

Summary

RDF/OWL as integrating semantic model in the Semantic
Web

describe events and actions of an application within its
RDF/OWL model

languages of different expressiveness/complexity available

ECA rules

components

application-level atomic events and atomic actions

specific languages (event algebras, process algebras)

Architecture: functionality provided by specialized nodes

ECA-CCS 18

Thank You
Questions ??

Further information and publications:
http://dbis.informatik.uni-goettingen.de/eca/

http://dbis.informatik.uni-goettingen.de/eca/

Complementing Slides

Action Component: Process Algebras

example: CCS (Calculus of Communicating Systems,
Milner 1980)

describes the execution of processes as a transition
system:
(only the asynchronous transitions are listed)

a : P a→ P ,
Pi

a→ P

∑i∈I Pi
a→ P

(for i ∈ I)

P a→ P′

P|Q a→ P′|Q
,

Q a→ Q′

P|Q a→ P|Q′

Pi{fix ~X~P/~X} a→ P′

fixi~X~P a→ P′

ECA-CCS 21

Atomic Event Specifications

Sample Event: <travel:canceled-flight flight=“LH123”>

<travel:reason>bad weather</travel:reason>

</travel:canceled-flight>

Event expressions require an auxiliary formalism for specifying
relevant events:

type of event (“travel:canceled-flight”),

constraints (“must have a travel:reason subelement”),

extract data from events (“bind @flight to variable flight”)

Sample: XML-QL-style matching
<atomic-event language=“match”>

<travel:canceled-flight flight=“{$flight}”><travel:reason/></travel:canceled-flight>
</atomic-event>

Event Expressions: Languages

EventExpression

Atomic
Event

Description

Composite
Event

Specification

Rule Model

Domain
Event

EventComposer
cardinality

Ontologies/Languages

Domain
Ontology

Atomic
Event

Description
Formalism

EventAlgebra
identifier

�

� k

1..*

1describes

from

uses

ECA-CCS 23

Sample Markup (Event Component)

<eca:rule xmlns:travel=“...”>

<eca:variable name=“theSeq”>

<eca:event xmlns:snoop=“...”>

<snoop:sequence>

<snoop:atomic-event language=“match”>

<travel:delayed-flight flight=“{$Flight}” minutes=“{$Minutes}”/>
</snoop:atomic-event>
<snoop:atomic-event language=“match”>

<travel:canceled-flight flight=“{$Flight}”/>
</snoop:atomic-event>

</snoop:sequence>

</eca:event>
</eca:variable>

:
</eca:rule>

binds variables:

- Flight, Minutes: by matching

- theSeq is bound to the sequence of events

that matched the pattern

Tasks

ECA Engine: Rule Semantics

Control flow: registering event component, receiving
“firing” answer, continuing with queries etc.

Variable Bindings, Join Semantics

Generic Request Handler: Mediator with Component
Engines

depending on Service Descriptions

Component Engines: dedicated to certain Event Algebras,
Query Languages, Action Languages

Domain Services (Portals): atomic events, queries, atomic
actions

ECA-CCS 25

ECA Architecture

ECA Engine:
<rule >

<event xmlns:ev=“. . . ”/ >. . . </event >

<query xmlns:ql=“. . . ”/ >. . . </query >

<test xmlns:tst=“. . . ”/ >. . . </test >

<action xmlns:act=“. . . ”/ >. . . </action >

</rule >

Generic
Request
Handler

Component Language Services

E · · · E Q · · · Q A · · · A

travel: banking: · · · uni:

Domain Services

LH SNCF · · ·

Individual Services

→ component,
input var.bdgs

← resulting
variable bdgs

ECA-CCS 26

Communication of Variable Bindings

XML markup for communication of variable bindings:

<log:variable-bindings >

<log:tuple >

<log:variable name=“ name” ref=“ URI”/ >

<log:variable name=“ name” > any value </log:variable >

:
</log:tuple >

<log:tuple > . . . </log:tuple >

:
<log:tuple > . . . </log:tuple >

</log:variable-bindings >

ECA-CCS 27

Communication ECA → GRH

the component to be processed

bindings of all relevant variables

[Sample: a query component]
<eca:query xmlns:ql=“ url”

rule=“ rule-id” component=“ component-id” >

<!-- query component -- >

< eca:query >

<log:variable-bindings >

<log:tuple > . . . </log:tuple >

:
<log:tuple > . . . </log:tuple >

<log:variable-bindings >

url is the namespace used by the event language

identifies appropriate service

Communication

ECA engine sends component to be processed together with
bindings of all relevant variables to GRH.

Generic Request Handler (GRH)

Submits component (with relevant input/used variable
bindings) to appropriate service (determined by
namespace/language used in the component)

if necessary: does some wrapping tasks
(for non-framework-aware services)

receives results and transforms them into flat variable
bindings and sends them back to the ECA engine ...

... where they are joined with the existing tuples ...

... and the next component is processed.

Communication Component Engine → GRH

result-bindings-pairs (semantics of expression)

<log:answers rule=“ rule-id” component=“ component-id” >

<log:answer >

<log:result >

<!-- functional result -- >

</log:result >

<log:variable-bindings >

<log:tuple > . . . </log:tuple >

:
<log:tuple > . . . </log:tuple >

</log:variable-bindings >

</log:answer >

<log:answer > . . . </log:answer >

:
<log:answer > . . . </log:answer >

</log:answers >

ECA-CCS 30

Communication GRH → ECA

set of tuples of variable bindings
(i.e., input/used variables and output/result variables)

is then joined with tuples in ECA engine

... and next component is processed

ECA-CCS 31

	Large
	Motivation and Goals
	ECA Rules
	Events and Actions in the Semantic Web
	Embedding of Languages
	Rule Markup: ECA-ML
	Binding and Use of Variables in ECA Rules
	Rule Markup: Example (Stripped)
	Active Concepts Ontologies
	Composite Actions: Process Algebras
	Adaptation of Process Algebras
	Languages in the Action Component
	{CCS} Markup
	Example
	
	Service-Based Architecture
	Comparison
	Summary
	QUESTIONS
	
	Action Component: Process Algebras
	Atomic Event Specifications
	Event Expressions: Languages
	Sample Markup (Event Component)
	Tasks
	ECA Architecture
	Communication of Variable Bindings
	Communication ECA $	o $ GRH
	Communication
	Communication Component Engine $	o $ GRH
	Communication GRH $	o $ ECA

