Combining ECA Rules with Process Algebras
for the Semantic Web

Erik Behrends, Oliver Fritzen, Wolfgang May,
Franz Schenk

Institut fUr Informatik, Universitat Gottingen,
Germany

{behrends,fritzen,may,schenk }@informatik.uni-goettingen.de

Supported by the EU Network of Excellence

RuleML 2006, Athens, Georgia/USA, Nov. 10,
2006

(Semantic) Web:

o XML: bridge the heterogeneity of data models and
languages

o RDF, OWL provide a computer-understandable semantics

... Same goals for describing behavior:

o description of behavior in the Semantic Web

o semantic description of behavior

Event-Condition-Action Rules are suitable for both goals:
operational semantics

» ontology of rules, events, actions

“On Event check Condition and then do Action”

K

K

K

K

paradigm of Event-Driven Behavior,

modular, declarative specification in terms of the domain
ontology

sublanguages for specifying Events, Conditions, Actions
global ECA rules that act “in the Web”

Requirements

K

K

K

ontology of behavior aspects
modular markup definition

Implement an operational and executable semantics

'Events and Actions in the Semantic Web

o applications do not only have an ontology that describes
static notions

o

Dbut also an ontology of events and actions

o

o Domain languages also describe behavior:

Domain Ontology

raise
— : i :
Events < Actions
‘ Classes | ‘ Relationships |

Concepts

Individuals

... there are not only atomic events and actions.

ECA Language :

<event/> <query/ > <test/ > <action/ >

embeds embeds

« / \ b

Event Query Test Action
Language Language Language Language
Composite Querigs Conditions Caomplex

Event Rgactions

Application-

| Atomic Events || Litefals || Atomic Actions |

majn Language

<IELEMENT rule (event,query*,test?,action +) >

<eca:rule rule-specific attributes>
<eca.event identification of the language >
event specification, probably binding variables
</eca:event >
<eca:query identification of the language > <!-- there may be several queries -->
guery specification; using variables, binding others
</eca:.query >
<eca:test identification of the language >
condition specification, using variables
</eca:test >
<eca.action identification of the language > <!-- there may be several actions -->
action specification, using variables, probably binding local ones
</eca:action >
</eca:rule >

— Rules

action(X, ..

event(Xl, . ,Xk), query(X,. ..

<eca.event>
event component
binds Xi,...,Xn
</eca:event>

_ A
register e

event

comp. result

variables

(Composite)
Event
Detection
Engine

7Xk7”

<eca:query>
guery component
over Xi,...,Xp, ..
join vars: Xl,

binds X,.1,..
</eca:query>

- X
X
WX

Xn), test(Xg,...

<eca:test>
over Xi,...
</eca:test>

, K

detection:

send A

query,
receive
result

Y
Query Engine

, %n)

<eca:action>
action comp.
uses Xi, ..., Xk
</eca:action>

send
action,
+ vars

Y

Action/
Process
Engine

Semantic Web: Domain Brokers and Domain Nodes

<IELEMENT rule (event,query* test?,action ™) >

<eca:rule xmins:travel="http://www.travel.de”>
<eca.event xmins:snoop="http://www.snoop.org”>
<snoop:seq> <travel:delayed-flight flight="{ >
<travel:canceled-flight flight="{ }’I> </snoop:seq>
</eca:event>
<eca:query-

<eca.opague lang="http://www.w3.org/xpath”>
doc(“http://xml.lufthansa.de”)/flights[code="{ }"l/passenger/@e-mail

</eca:opaque> </eca:query-
<eca:action xmins:smtp="...">
<smtp:send-mail to=" " text="..."/>
</eca:action>
</eca:rule>

ECA-CCS

o Domains specify atomic events, actions and static concepts

Composite [Algebraic] Active Concepts

o Event algebras: composite events

Process algebras (e.g. CCS)

consist of composers/operators to define composite
events/processes,

leaves of the terms are atomic domain-level events/actions,
as operator trees: “standard” XML markup of terms
RDF markup as languages,

e o o o

every expression can be associated with its language.

' Composite Actions: Process Algebras

e.g., CCS - Calculus of Communicating Systems [Milner‘80]

operational semantics defined by transition rules, e.g.

o

»

»

o

o

a sequence of actions to be executed,
a process that includes “receiving” actions,
guarded (i.e., conditional) execution alternatives,

the start of a fixpoint (i.e., iteration or even infinite
processes), and

a family of communicating, concurrent processes.

» Originally only over atomic processes/actions

reading and writing simulated by communication
a (send), a (receive) “match” as communication

... extend this to the (Semantic) Web environment with autono-
mous nodes.

Goal: specification of reactions in ECA rules

» liberal asynchronous variant of CCS: go on when possible,
waiting and delaying possible

extend with variable bindings semantics
Input variables come bound to values/URIs
additional variables can be bound by “communication”

o o o o

gueries as atomic actions: to be executed, contribute to the
variable bindings

event subexpressions as atomic actions: like waiting for a
communication

= subexpressions in other kinds of component languages

11

Implements
/
Process Action Component Composer
Engine Language, e.g. CCS *| name
ll
I
:' \ i Event Query
embeds! Y58° Detector || Engine
_ 15
Broker L Domain Event | | cition
_ Language Language Language
Domain uri o _
Nodes uri
Atomic

; Atomic
‘therals ” Actions |

Events

<ccs:sequence>CCS subexpressions </ccs:sequence>
<ccs:alternative>CCS subexpressions </ccs:alternative>
<ccs:concurrent-CCS subexpressions </ccs:concurrent>

» <ccs:fixpoint variables="X1 X5 ... Xp" Index=“" /[“my” index

localvars="...”> n subexpressions </ccs:fixpoint>

<ccs:atomic-action-domain-level action </ccs:atomic-action>
<ccs.event xmins:ev-ns=“uri’>event expression </ccs:event>
<ccs:query xmlns:g-ns=“uri”>query expression </ccs:query-
<ccs:test xmins:t-ns="uri”>test expression </ccs:test>

Embedding Mechanisms: Same as in ECA-ML

communication by logical variables

o namespaces for identifying languages of subexpressions

Consider the following scenario:

o If a student falls twice in a written exam (composite event),
It is required that another oral assessment takes place for
deciding upon final passing or failure.

Action component of the rule: Ask the responsible lecturer
for a date and time. If a room is available, the student and
the lecturer are notified. If not, ask for another date/time.

fixX.(ask_appointment($Lecturer,$Subj,$StudNo) :
0 proposed_appointment($Lecturer,$Subj,$DateTime) :
(available(room,$DateTime) +

(— available(room,$DateTime) : X))) :
inform($StudNo,$Subj,$DateTime) :
inform($Lecturer,$Subj,$DateTime)

14

<eca:rule xmins:uni="http://www.education.de”>
<eca:event- failed twice — binds ID and </eca:event>
<eca:query> binds e-mail addresses of the student and the lecturer </eca:query->
<eca:action xmins:ccs="...">

<Cccs:.seq>
<ccs:fixpoint variables="X" index="1" localvars=" ">
<Cccs:.seq>
<ccs:atomic> send asking mail to lecturer </ccs:atomic>
<ccs:event> answer binds and </ccs:event>
<ccs:guery> any room at available? </ccs:query-
<ccs:alt>
<ccs:test> yes </ccs:test>
<Cccs:seq>
<ccs:test> no</ccs:test> <ccs:variable name="X"/>
</ccs:seq>
</ccs:alt>
</ccs:seq>
</ccs:fixpoint>
<ccs:atomic> send message (, ,) to student </ccs:atomic>
<ccs:atomic> send message (, ,) to lecturer </ccs:atomic>
</ccs:seq>

</eca:action>
</eca:rule>

1.3: atomic

Event 1.2: register event
event patterns :
matchptravel' Detection| travel: match: snoop:
/ SNoop. \
Atomic Event [<= -~ 4: dm ECA
Matcher 3: detected parameters Engine
match: parameters Action eca:
A Engine 5.1: action
14: register me | 2.2: atomic CCS: Cccs: travel: smtp:
travel: | events travel:
— e e e s . . . I —— ———
Domain et actions smtp: rule
Broker e eca: travel:
travel . match: snoop:
AS 2 1b- SMT.P Mail ccs: smtp:
A SIS o Service
2.1a: atomic ' | 2o ° AT smtp:
_I'booking ™o events
avents travel: i _ N _
| | travel: S travel:
, N 5.3b: . _
N message Client C:
Lufthansa SNCF (here: Travel
travel: travel: confirm) Agen(;y
by url travel: 16

o CCS (extended with events and queries) strictly more
expressive than ECA rules alone:
ECA pattern in CCS: event:.condition:action,

o many ECA rules have much simpler actions and do not
need CCS,

» useful to have CCS as an option for the action part.

17

o RDF/OWL as integrating semantic model in the Semantic
Web

» describe events and actions of an application within its
RDF/OWL model

» languages of different expressiveness/complexity available

o ECA rules
s components
s application-level atomic events and atomic actions
s specific languages (event algebras, process algebras)

» Architecture: functionality provided by specialized nodes

18

Thank You
Questions ??

Further information and publications:
http://dbis.informatik.uni-goettingen.d

http://dbis.informatik.uni-goettingen.de/eca/

Complementing Slides

o example: CCS (Calculus of Communicating Systems,
Milner 1980)

» describes the execution of processes as a transition
system:
(only the asynchronous transitions are listed)

a
pap
a:P&p | L (foriel)
Zielpl‘_)P
P& p Q&
PREPIQ 7 PRQRZEPQ

P {fix XB/X} & P/
fixiXP 2, P

21

Sample Event: | <travel:canceled-flight flight=“LH123">
<travel:reason>bad weather</travel:reason>
</travel.canceled-flight>

Event expressions require an auxiliary formalism for specifying
relevant events:

» type of event (“travel:canceled-flight”),
constraints (“must have a travel:reason subelement”),

extract data from events (“bind @flight to variable ")

Sample: XML-QL-style matching

<atomic-event language="match”>
<travel:canceled-flight flight="{$ }"><travel:reason/></travel:canceled-flight>
</atomic-event>

EventExpression

/V I
Atomic \ Composite
Event Event

Description Specification

describes / 1
Domain uses EventComposer
Event cardinality

T
lfrom \ é
Atomic
Domain Event EventAlgebra
Ontology Description identifier

Formalism

23

<eca:rule xmlns:travel="...">

<eca.event xmins:snoop="...">
<snhoop:sequence>
<snhoop:atomic-event language=“match™>
<travel:delayed-flight flight="{$ }” minutes="{$ Pl
</snoop:atomic-event>
<snhoop:atomic-event language=“match™>
<travel:canceled-flight flight="{$ e
</snoop:atomic-event>
</snoop:sequence>

</eca:event> _ _
_ binds variables:

; - : by matching
</leca:rule> - is bound to the sequence of events
that matched the pattern

o ECA Engine: Rule Semantics

s Control flow: registering event component, receiving
“firing” answer, continuing with queries etc.

s Variable Bindings, Join Semantics

o Generic Request Handler: Mediator with Component
Engines
s depending on Service Descriptions

o Component Engines: dedicated to certain Event Algebras,
Query Languages, Action Languages

o Domain Services (Portals): atomic events, queries, atomic
actions

25

i __ component,
<event xmins:ev="..."/ >...</event> Input var.bdgs |Generic
<query xmlins:ql=*...”"/ >...</query> = > (Request
<test xmins:tst="..."/ >...</test> Iti Handler
- . kit 1] = resu tln
<action xmlns:act="..."/ =>...</action >| < vari
</rule >

travel:

/

banking:

uni:

\

LH

SNCF

Domain Services

Individual Services

26

ECA-CCS

XML markup for communication of variabl

<log:variable-bindings >
<log:tuple >

<log:variable name=* name” ref=" URI"/>

<log:variable name=“ name” > any value </log:variable >

</I6g:tuple >
<log:tuple > ... </log:tuple >

<Idg:tup|e > . ..</log:tuple >
</log:variable-bindings >

the component to be processed
» bindings of all relevant variables

[Sample: a query component]
<eca:query xmins:qgl=" url”
rule=" rule-id” component=" component-id”>
<l-- query component -- >
< eca:query >
<log:variable-bindings >
<log:tuple > ... </log:tuple >

<Idg:tup|e > ...</log:tuple >
<log:variable-bindings >

» url is the namespace used by the event
» Iidentifies appropriate service

ECA engine sends component to be processed together with
bindings of all relevant variables to GRH.

Generic Request Handler (GRH)

o Submits component (with relevant input/used variable
bindings) to appropriate service (determined by
namespace/language used in the component)

» Iif necessary: does some wrapping tasks
(for non-framework-aware services)

receives results and transforms them into flat variable
bindings and sends them back to the ECA engine ...

» ... where they are joined with the existing tuples ...
... and the next component Is processed.

result-bindings-pairs (semantics of exp

<log:answers rule=* rule-id” component=* component-id”>
<log:answer >
<log:result >
<l-- functional result -- >
</log:result >
<log:variable-bindings >
<log:tuple > ... </log:tuple >

<log:tuple > ... </log:tuple >
</log:variable-bindings >
</log:answer >
<log:answer > ... </log:answer >

<log:answer > ... </log:answer >
</log:answers >

ECA-CCS

» set of tuples of variable bindings
(.e., iInput/used variables and output/result variables)

»# Is then joined with tuples in ECA engine

» ... and next component is processed

31

	Large
	Motivation and Goals
	ECA Rules
	Events and Actions in the Semantic Web
	Embedding of Languages
	Rule Markup: ECA-ML
	Binding and Use of Variables in ECA Rules
	Rule Markup: Example (Stripped)
	Active Concepts Ontologies
	Composite Actions: Process Algebras
	Adaptation of Process Algebras
	Languages in the Action Component
	{CCS} Markup
	Example
	
	Service-Based Architecture
	Comparison
	Summary
	QUESTIONS
	
	Action Component: Process Algebras
	Atomic Event Specifications
	Event Expressions: Languages
	Sample Markup (Event Component)
	Tasks
	ECA Architecture
	Communication of Variable Bindings
	Communication ECA $	o $ GRH
	Communication
	Communication Component Engine $	o $ GRH
	Communication GRH $	o $ ECA

