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Motivation and Goals

Description of behavior in the Semantic Web

semantic description of behavior

Scope

behavior of individual nodes (updates + reasoning)

cooperative behavior and evolution of the Web (local
behavior + communication)

different abstraction levels and languages

⇒ use Event-Condition-Action Rules as a well-known
paradigm.
⇒ ontologies must also describe actions and events.
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Ontologies including Dynamic Aspects

Ontologies of Application-Independent Domains

messaging, time,

database level events

Atomic Events Literals Atomic Actions

Application-Domain Ontology

Atomic Events Literals Atomic Actions

correlate actions, state, and events
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Ontologies including Dynamic Aspects

Ontologies of Application-Independent Domains

messaging, time,

database level events

Atomic Events Literals Atomic Actions

Application-Domain Ontology

Atomic Events Literals Atomic Actions

talk about

correlate actions, state, and events
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Abstraction Levels and Types of Rules

Semantic
Level Events

Semantic
Level Actions

Integrated (RDF)
Level Events

Integrated (RDF)
Level Actions

Local (XML,SQL)
Level Events

Local (XML,SQL)
Level Actions

A
bstraction

ECA Business

ACE Mapping

ECE Deriv.

ECE Deriv.
ACA Reduct.

ACA Reduct.

ECA triggers

database level:

actions=events

ECE Deriv.

ACA Reduct.
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Sample Rule on the XML Level

reacts on an event in the XML database

here: maps it to an event on the RDF level

actually an ECE derivation rule

ON INSERT OF department/professor
let $prof:= :NEW/@rdf-uri,

$dept:= :NEW/parent::department/@rdf-uri
RAISE RDF EVENT(INSERT OF has professor OF department)

with $subject:= $dept, $property:=has professor, $object:=$prof;
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Sample Rule on the RDF Level

reacts on an event on the RDF view level

here: maps it to an event on the OWL level

again an ECE derivation rule

ON INSERT OF has professor OF department
% (comes with parameters $subject=dept,
% $property:=has professor and $object=prof )
% $university is a constant defined in the (local) database

RAISE EVENT
(professor hired($object, $subject, $university))

... which is then an event of the domain ontology.
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Analysis of Rule Components

... have a look at the clean concepts:
“On Event check Condition and then do Action”

Event: specifies a rough restriction on what dynamic
situation probably something has to be done.
Collects some parameters of the events.

Condition: specifies a more detailed condition, including
static data if actually something has to be done.
⇒ evaluate a ((Semantic) Web) query.

Action: actually does something.

Example

“if a flight is offered from FRA to LIS under 100E and I
have no lectures these days then do ...”PPSWR 05 7



Clean, Declarative “Normal Form”

Rule Components:
Event

dynamic
Condition

static
Action

dynamic
event query test action

collect test act

Event: detect just the dynamic part of a situation,

Query: then obtain additional information by a query,

Test: then evaluate a boolean condition,

Action: then actually do something.

Component sublanguages: heterogeneous

Communication between components: logical variables
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Modular ECA Concept: Rule Ontology

Rule Model ECARule

EventComponent ConditionComponent ActionComponent

Query
Component

Test
Component

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model
Language
Name

URI

1 0..1 1..*

* 1

�

�

�

�

↓uses ↓uses ↓uses ↓uses
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Rule Markup: ECA-ML
<!ELEMENT rule (event,query*,test?,action+) >

<eca:rule rule-specific attributes>

<eca:event identification of the language >

event specification, probably binding variables
</eca:event>

<eca:query identification of the language > <!-- there may be several queries -->

query specification; using variables, binding others
</eca:query>

<eca:test identification of the language >

condition specification, using variables
</eca:test>

<eca:action identification of the language > <!-- there may be several actions -->

action specification, using variables, probably binding local ones
</eca:action>

</eca:rule>



Embedding of Languages

ECA Language :
<event/> <query/> <test/> <action/>

ECA Language

Event
Language

Query
Language

Test
Language

Action
Language

Domain Languages

Languages for Application-Independent Domains

Atomic Events Literals Atomic Actions

Application-Domain Language

Atomic Events Literals Atomic Actions

embeds embeds embeds embeds

embeds embeds embeds embeds

talk about
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Sublanguages: Algebraic Languages

Domains specify atomic events, actions and literals

Algebraic Languages

Event algebras: composite events

(when) E1 and some time afterwards E2 (then do A)

(when) E1 happened and then E2, but not E3 after at
least 10 minutes (then do A)

well-investigated in Active Databases (e.g. SNOOP).

algebraic query languages (e.g. SQL, XQuery)

tests: boolean algebra

Process algebras (e.g. CCS)
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Algebraic Sublanguages

ComponentLanguage

DomainEngine Processor

DomainLanguage
name

AlgebraicLanguage
name

Semantics

Primitive
arity

Composer
/arity

cardinality

Parameter
name

1..* *

*

*

↓impl

*

*
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Syntactical Structure of Expressions

RuleComponent Expression

AtomicExpr CompositeExpr

Variable

Parameter
name

Composer

Languages

DomainLanguage AlgebraicLanguage

Language

represented by

�

�

↓has language ↓has language

1

**

*

*
**

�

�

as operator trees: “standard” XML markup of terms

RDF markup as languages

every expression can be associated with its language



Event Component: Event Algebras

a composite event is detected when its “final” subevent is
detected:

(E1∇E2)(x, t) :⇔ E1(x, t)∨E2(x, t) ,

(E1;E2)(x,y, t) :⇔ ∃t1 ≤ t : E1(x, t1)∧E2(y, t)

¬(E2)[E1,E3](t) :⇔ if E1 and then a first E3 occurs,

without occurring E2 in between.

“join” variables between atomic events

“safety” conditions similar to Logic Programming rules

Result:

the sequence that matched the event

optional: additional variable bindings
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Query Component

... obtain additional information:

local, distributed, OWL-level

Result:

the answer to the query

optional: additional variable bindings

Condition and Action Component

Condition: check a boolean condition (including predicates
of the application domain),

Action: do something by using the variable bindings.
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Subconcepts and Sublanguages

different languages, different expressiveness/complexity

common structure: algebraic languages

e/q/t/a subelements contain a language identification, and
appropriate contents

embedding of languages according to language hierarchy:

algebraic languages have a natural term markup.

every such language “lives” in an own namespace,

domain languages also have an own namespace,

(sub)terms must have a well-defined result.
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Rule Semantics

Deductive rules: variable bindings Body→Head

communication/propagation of information by logical
variables:
E +
→Q→T & A

safety as usual ...

ECARule RuleComponent Expression

Variable

name

repr. by

1

↓scopes
*

*free
pos,neg

*
*pos,neg

free,bound*
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Binding Variables in the Collect Part

concerns: (Composite) Events and Queries

to values, XML fragments, RDF fragments, and (composite)
events

Logic Programming (Datalog, F-Logic): binding variables by
patterns.
proposal: markup of E and Q languages uses XSLT-style
<variable name=“var-name”> and $var-name

functional style (SQL, OQL, XQuery): expressions return a
value/fragment.
⇒ must be bound to a variable to be kept and reused
proposal:
<variable name=“var-name”>event-spec</variable>
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Sample Markup (Event Component)
<eca:rule xmlns:uni=“...”>

<eca:variable name=“theSeq”>

<eca:event xmlns:snoop=“...”
<snoop:sequence>

<eca:atomic-event>

<uni:reg open subject=“$Subj”/>
</eca:atomic-event>

<eca:atomic-event>

<uni:register subject=“$Subj” name=“$Name”/>
</eca:atomic-event>

</snoop:sequence>

</eca:event>

</eca:variable>

:
</eca:rule>

binds variables:

- Subj, Name: by matching

- theSeq returns the sequence of events that

matched the pattern



Engines – Service-Based Architecture

Language Processors as Web Services:

ECA Rule Execution Engine employs other services for
E/Q/T/A parts:
nodes register their rules at the engines; processing is
done by the engine

dedicated services for each of the event/action languages
e.g., composite event detection engines

dedicated services for domain-specific issues:
raising and communicating events, predicates,
executing actions/updates

query languages often implemented directly by the Web
nodes (portals and data sources)
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Architecture

Event
Detection S
snoop:

ECA
Engine R
eca:

Event
Broker
travel:

Lufthansa
travel:

SNCF
travel:

Client C:
Travel
Agency
travel:

1.1: register rule
eca: travel: snoop:

1.2: register event
travel: snoop:

1.3: register me
travel:

2.1a∗: atomic
events
travel:

2.1b∗: atomic
events
travel:

2.2∗: atomic
events
travel:

3: detected
parameters

4.1: updates
(here:
bookings)

travel:

4.2: messages
(here:
confirm)

travel:

Language Services
Application Domain
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Summary

unified & flexible Semantic-Web-based framework for
specifying behavior

languages of different expressiveness/complexity

describe events and actions of an application within its
RDF/OWL model

architecture: functionality provided by specialized nodes
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Publications & Details

REWERSE I5-D4: “Models and Languages for Evolution
and Reactivity”: Everything + examples

PPSWR05: preliminary workshop paper

ODBASE05: ontology of rules, rule components and
languages, and the service-oriented architecture

RuleML05: languages and their markup, communication
and rule execution model
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