
A General Language for Evolution and
Reactivity in the Semantic Web

José Júlio Alferes Ricardo Amador

Wolfgang May

CENTRIA, Universidade Nova de Lisboa, Portugal

Institut für Informatik, Universität Göttingen, Germany

PPSWR 2005, Dagstuhl, Sept. 12-16, 2005

Motivation and Goals

Description of behavior in the Semantic Web

semantic description of behavior

Scope

behavior of individual nodes (updates + reasoning)

cooperative behavior and evolution of the Web (local
behavior + communication)

different abstraction levels and languages

⇒ use Event-Condition-Action Rules as a well-known
paradigm.
⇒ ontologies must also describe actions and events.

PPSWR 05 2

Ontologies including Dynamic Aspects

Ontologies of Application-Independent Domains

messaging, time,

database level events

Atomic Events Literals Atomic Actions

Application-Domain Ontology

Atomic Events Literals Atomic Actions

correlate actions, state, and events

PPSWR 05 3

Ontologies including Dynamic Aspects

Ontologies of Application-Independent Domains

messaging, time,

database level events

Atomic Events Literals Atomic Actions

Application-Domain Ontology

Atomic Events Literals Atomic Actions

talk about

correlate actions, state, and events

PPSWR 05 3

Abstraction Levels and Types of Rules

Semantic
Level Events

Semantic
Level Actions

Integrated (RDF)
Level Events

Integrated (RDF)
Level Actions

Local (XML,SQL)
Level Events

Local (XML,SQL)
Level Actions

A
bstraction

ECA Business

ACE Mapping

ECE Deriv.

ECE Deriv.
ACA Reduct.

ACA Reduct.

ECA triggers

database level:

actions=events

ECE Deriv.

ACA Reduct.

PPSWR 05 4

Sample Rule on the XML Level

reacts on an event in the XML database

here: maps it to an event on the RDF level

actually an ECE derivation rule

ON INSERT OF department/professor
let $prof:= :NEW/@rdf-uri,

$dept:= :NEW/parent::department/@rdf-uri
RAISE RDF EVENT(INSERT OF has professor OF department)

with $subject:= $dept, $property:=has professor, $object:=$prof;

PPSWR 05 5

Sample Rule on the RDF Level

reacts on an event on the RDF view level

here: maps it to an event on the OWL level

again an ECE derivation rule

ON INSERT OF has professor OF department
% (comes with parameters $subject=dept,
% $property:=has professor and $object=prof)
% $university is a constant defined in the (local) database

RAISE EVENT
(professor hired($object, $subject, $university))

... which is then an event of the domain ontology.

PPSWR 05 6

Analysis of Rule Components

... have a look at the clean concepts:
“On Event check Condition and then do Action”

Event: specifies a rough restriction on what dynamic
situation probably something has to be done.
Collects some parameters of the events.

Condition: specifies a more detailed condition, including
static data if actually something has to be done.
⇒ evaluate a ((Semantic) Web) query.

Action: actually does something.

Example

“if a flight is offered from FRA to LIS under 100E and I
have no lectures these days then do ...”PPSWR 05 7

Clean, Declarative “Normal Form”

Rule Components:
Event

dynamic
Condition

static
Action

dynamic
event query test action

collect test act

Event: detect just the dynamic part of a situation,

Query: then obtain additional information by a query,

Test: then evaluate a boolean condition,

Action: then actually do something.

Component sublanguages: heterogeneous

Communication between components: logical variables
PPSWR 05 8

Modular ECA Concept: Rule Ontology

Rule Model ECARule

EventComponent ConditionComponent ActionComponent

Query
Component

Test
Component

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model
Language
Name

URI

1 0..1 1..*

* 1

�

�

�

�

↓uses ↓uses ↓uses ↓uses

PPSWR 05 9

Rule Markup: ECA-ML
<!ELEMENT rule (event,query*,test?,action+) >

<eca:rule rule-specific attributes>

<eca:event identification of the language >

event specification, probably binding variables
</eca:event>

<eca:query identification of the language > <!-- there may be several queries -->

query specification; using variables, binding others
</eca:query>

<eca:test identification of the language >

condition specification, using variables
</eca:test>

<eca:action identification of the language > <!-- there may be several actions -->

action specification, using variables, probably binding local ones
</eca:action>

</eca:rule>

Embedding of Languages

ECA Language :
<event/> <query/> <test/> <action/>

ECA Language

Event
Language

Query
Language

Test
Language

Action
Language

Domain Languages

Languages for Application-Independent Domains

Atomic Events Literals Atomic Actions

Application-Domain Language

Atomic Events Literals Atomic Actions

embeds embeds embeds embeds

embeds embeds embeds embeds

talk about

PPSWR 05 11

Sublanguages: Algebraic Languages

Domains specify atomic events, actions and literals

Algebraic Languages

Event algebras: composite events

(when) E1 and some time afterwards E2 (then do A)

(when) E1 happened and then E2, but not E3 after at
least 10 minutes (then do A)

well-investigated in Active Databases (e.g. SNOOP).

algebraic query languages (e.g. SQL, XQuery)

tests: boolean algebra

Process algebras (e.g. CCS)

PPSWR 05 12

Algebraic Sublanguages

ComponentLanguage

DomainEngine Processor

DomainLanguage
name

AlgebraicLanguage
name

Semantics

Primitive
arity

Composer
/arity

cardinality

Parameter
name

1..* *

*

*

↓impl

*

*

PPSWR 05 13

Syntactical Structure of Expressions

RuleComponent Expression

AtomicExpr CompositeExpr

Variable

Parameter
name

Composer

Languages

DomainLanguage AlgebraicLanguage

Language

represented by

�

�

↓has language ↓has language

1

**

*

*
**

�

�

as operator trees: “standard” XML markup of terms

RDF markup as languages

every expression can be associated with its language

Event Component: Event Algebras

a composite event is detected when its “final” subevent is
detected:

(E1∇E2)(x, t) :⇔ E1(x, t)∨E2(x, t) ,

(E1;E2)(x,y, t) :⇔ ∃t1 ≤ t : E1(x, t1)∧E2(y, t)

¬(E2)[E1,E3](t) :⇔ if E1 and then a first E3 occurs,

without occurring E2 in between.

“join” variables between atomic events

“safety” conditions similar to Logic Programming rules

Result:

the sequence that matched the event

optional: additional variable bindings

PPSWR 05 15

Query Component

... obtain additional information:

local, distributed, OWL-level

Result:

the answer to the query

optional: additional variable bindings

Condition and Action Component

Condition: check a boolean condition (including predicates
of the application domain),

Action: do something by using the variable bindings.

PPSWR 05 16

Subconcepts and Sublanguages

different languages, different expressiveness/complexity

common structure: algebraic languages

e/q/t/a subelements contain a language identification, and
appropriate contents

embedding of languages according to language hierarchy:

algebraic languages have a natural term markup.

every such language “lives” in an own namespace,

domain languages also have an own namespace,

(sub)terms must have a well-defined result.

PPSWR 05 17

Rule Semantics

Deductive rules: variable bindings Body→Head

communication/propagation of information by logical
variables:
E +
→Q→T & A

safety as usual ...

ECARule RuleComponent Expression

Variable

name

repr. by

1

↓scopes
*

*free
pos,neg

*
*pos,neg

free,bound*

PPSWR 05 18

Binding Variables in the Collect Part

concerns: (Composite) Events and Queries

to values, XML fragments, RDF fragments, and (composite)
events

Logic Programming (Datalog, F-Logic): binding variables by
patterns.
proposal: markup of E and Q languages uses XSLT-style
<variable name=“var-name”> and $var-name

functional style (SQL, OQL, XQuery): expressions return a
value/fragment.
⇒ must be bound to a variable to be kept and reused
proposal:
<variable name=“var-name”>event-spec</variable>

PPSWR 05 19

Sample Markup (Event Component)
<eca:rule xmlns:uni=“...”>

<eca:variable name=“theSeq”>

<eca:event xmlns:snoop=“...”
<snoop:sequence>

<eca:atomic-event>

<uni:reg open subject=“$Subj”/>
</eca:atomic-event>

<eca:atomic-event>

<uni:register subject=“$Subj” name=“$Name”/>
</eca:atomic-event>

</snoop:sequence>

</eca:event>

</eca:variable>

:
</eca:rule>

binds variables:

- Subj, Name: by matching

- theSeq returns the sequence of events that

matched the pattern

Engines – Service-Based Architecture

Language Processors as Web Services:

ECA Rule Execution Engine employs other services for
E/Q/T/A parts:
nodes register their rules at the engines; processing is
done by the engine

dedicated services for each of the event/action languages
e.g., composite event detection engines

dedicated services for domain-specific issues:
raising and communicating events, predicates,
executing actions/updates

query languages often implemented directly by the Web
nodes (portals and data sources)

PPSWR 05 21

Architecture

Event
Detection S
snoop:

ECA
Engine R
eca:

Event
Broker
travel:

Lufthansa
travel:

SNCF
travel:

Client C:
Travel
Agency
travel:

1.1: register rule
eca: travel: snoop:

1.2: register event
travel: snoop:

1.3: register me
travel:

2.1a∗: atomic
events
travel:

2.1b∗: atomic
events
travel:

2.2∗: atomic
events
travel:

3: detected
parameters

4.1: updates
(here:
bookings)

travel:

4.2: messages
(here:
confirm)

travel:

Language Services
Application Domain

PPSWR 05 22

Summary

unified & flexible Semantic-Web-based framework for
specifying behavior

languages of different expressiveness/complexity

describe events and actions of an application within its
RDF/OWL model

architecture: functionality provided by specialized nodes

PPSWR 05 23

Publications & Details

REWERSE I5-D4: “Models and Languages for Evolution
and Reactivity”: Everything + examples

PPSWR05: preliminary workshop paper

ODBASE05: ontology of rules, rule components and
languages, and the service-oriented architecture

RuleML05: languages and their markup, communication
and rule execution model

PPSWR 05 24

	Large
	Motivation and Goals
	Ontologies including Dynamic Aspects
	Abstraction Levels and Types of Rules
	Sample Rule on the XML Level
	Sample Rule on the RDF Level
	Analysis of Rule Components
	Clean, Declarative ``Normal Form''
	Modular ECA Concept: Rule Ontology
	Rule Markup: ECA-ML
	Embedding of Languages
	Sublanguages: Algebraic Languages
	Algebraic Sublanguages
	Syntactical Structure of Expressions
	Event Component: Event Algebras
	Query Component
	Subconcepts and Sublanguages
	Rule Semantics
	Binding Variables in the Collect Part
	Sample Markup (Event Component)
	Engines -- Service-Based Architecture
	Architecture
	Summary
	Publications & Details

